On the Gabor frame set for compactly supported continuous functions

[1]  Inmi Kim Gabor frames with trigonometric spline dual windows , 2015 .

[2]  K. Gröchenig Partitions of Unity and New Obstructions for Gabor Frames , 2015 .

[3]  J. Lemvig,et al.  Counterexamples to the B-spline Conjecture for Gabor Frames , 2015, 1507.03982.

[4]  O. Christensen,et al.  On Gabor frames generated by sign-changing windows and B-splines , 2015, 1503.02160.

[5]  J. Stöckler,et al.  Full length article: Zak transforms and Gabor frames of totally positive functions and exponential B-splines , 2014 .

[6]  H. Feichtinger,et al.  Dilation of the Weyl symbol and Balian-Low theorem , 2013 .

[7]  Qiyu Sun,et al.  The $abc$-problem for Gabor systems , 2013, ArXiv.

[8]  Rae Young Kim,et al.  Gabor windows supported on [ − 1, 1] and dual windows with small support , 2011, Advances in Computational Mathematics.

[9]  Yurii Lyubarskii,et al.  Gabor frames with rational density , 2011, ArXiv.

[10]  K. Grōchenig,et al.  Gabor Frames and Totally Positive Functions , 2011, 1104.4894.

[11]  Richard S. Laugesen,et al.  Gabor dual spline windows , 2009 .

[12]  Karlheinz Gröchenig,et al.  Note on B-splines, wavelet scaling functions, and Gabor frames , 2003, IEEE Trans. Inf. Theory.

[13]  H. Feichtinger,et al.  Varying the time-frequency lattice of Gabor frames , 2003 .

[14]  A. Janssen On Generating Tight Gabor Frames at Critical Density , 2003 .

[15]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[16]  T. Strohmer,et al.  Hyperbolic secants yield Gabor frames , 2002, math/0301134.

[17]  G. Steidl,et al.  Riesz bounds of Wilson bases generated byB-splines , 2000 .

[18]  Vincenza Del Prete,et al.  Estimates, decay properties, and computation of the dual function for Gabor frames , 1999 .

[19]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[20]  Ajem Guido Janssen,et al.  Some Weyl-Heisenberg frame bound calculations , 1996 .

[21]  K. Seip Density theorems for sampling and interpolation in the Bargmann-Fock space I. , 1992, math/9204238.

[22]  I. Daubechies,et al.  Frames in the Bargmann Space of Entire Functions , 1988 .

[23]  Orbit On entire functions restricted to intervals, partition of unities, and dual Gabor frames∗ , 2013 .

[24]  Ole Christensen,et al.  Gabor windows supported on [−1,1] and compactly supported dual windows , 2010 .

[25]  A. Janssen The duality condition for Weyl-Heisenberg frames , 1998 .

[26]  K. Seip,et al.  Density theorems for sampling and interpolation in the Bargmann-Fock space II. , 1992 .

[27]  Resear,et al.  Zak Transforms With Few Zeros and the Tie , 2022 .