A Bayesian sparse reconstruction method for fault detection and isolation

This article develops a Bayesian method for fault detection and isolation using a sparse reconstruction framework. The normal/training data is assumed to follow a signal‐plus‐noise model, and an indicator matrix is used to show whether the test data is from a faulty process. The distribution of the indicator matrix is modeled by a Laplacian distribution, which forces the indicator matrix to be a sparse one, and a Gibbs sampler is derived to obtain the estimation/reconstruction of the indicator matrix, the unobserved signals, and other parameters like signal mean, covariance, and noise variance. The faulty variables can then be detected and isolated by inspecting whether corresponding rows of the indicator matrix are zero. The proposed Bayesian approach is data driven; it allows for simultaneous fault detection and isolation. A simulation study and an industrial case study are used to test the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Theodora Kourti,et al.  Process analysis, monitoring and diagnosis, using multivariate projection methods , 1995 .

[2]  Gang Chen,et al.  Predictive on-line monitoring of continuous processes , 1998 .

[3]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[4]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[5]  David J. Sandoz,et al.  Extended PLS approach for enhanced condition monitoring of industrial processes , 2001 .

[6]  Furong Gao,et al.  Review of Recent Research on Data-Based Process Monitoring , 2013 .

[7]  John D. Andrews,et al.  Bayesian belief networks for system fault diagnostics , 2009, Qual. Reliab. Eng. Int..

[8]  Simon J. Godsill,et al.  A Bayesian Approach for Blind Separation of Sparse Sources , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[9]  Silvio Simani,et al.  Model-Based Fault Diagnosis Techniques , 2003 .

[10]  Leo H. Chiang,et al.  Process monitoring using causal map and multivariate statistics: fault detection and identification , 2003 .

[11]  Anna Pernestål,et al.  A Bayesian Approach to Fault Isolation with Application to Diesel Engine Diagnosis , 2007 .

[12]  Mark A. Girolami,et al.  A Variational Method for Learning Sparse and Overcomplete Representations , 2001, Neural Computation.

[13]  Lei Xie,et al.  Shrinking principal component analysis for enhanced process monitoring and fault isolation , 2013 .

[14]  Jennifer G. Dy,et al.  Sparse Probabilistic Principal Component Analysis , 2009, AISTATS.

[15]  Samuel Kaski,et al.  Bayesian Canonical correlation analysis , 2013, J. Mach. Learn. Res..

[16]  Si-Zhao Joe Qin,et al.  Reconstruction-based contribution for process monitoring , 2009, Autom..

[17]  Qinghua Zhang,et al.  Nonlinear system fault detection and isolation based on bootstrap particle filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  Xun Wang,et al.  Detecting abnormal situations using the Kullback-Leibler divergence , 2014, Autom..

[19]  Visakan Kadirkamanathan,et al.  Particle filtering-based fault detection in non-linear stochastic systems , 2002, Int. J. Syst. Sci..

[20]  George J. Vachtsevanos,et al.  A particle-filtering approach for on-line fault diagnosis and failure prognosis , 2009 .

[21]  Zhi-huan Song,et al.  Mixture Bayesian regularization method of PPCA for multimode process monitoring , 2010 .

[22]  Tiina M. Komulainen,et al.  An online application of dynamic PLS to a dearomatization process , 2004, Comput. Chem. Eng..

[23]  Gerry Leversha,et al.  Introduction to numerical analysis (3rd edn), by J. Stoer and R. Bulirsch. Pp. 744. £49. 2002. ISBN 0 387 95452 X (Springer-Verlag). , 2004, The Mathematical Gazette.

[24]  Masoud Soroush,et al.  A method of sensor fault detection and identification , 2005 .

[25]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[26]  C. L. Philip Chen,et al.  Particle filtering for adaptive sensor fault detection and identification , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[27]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[28]  P. Miller,et al.  Contribution plots: a missing link in multivariate quality control , 1998 .

[29]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[30]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.