Similarity-based Rough Sets and Its Applications in Data Mining

[1]  Tamás Mihálydeák Logic on Similarity Based Rough Sets , 2018, IJCSR.

[2]  Salvatore Greco,et al.  Parameterized rough set model using rough membership and Bayesian confirmation measures , 2008, Int. J. Approx. Reason..

[3]  Moshe Tennenholtz,et al.  Ranking systems: the PageRank axioms , 2005, EC '05.

[4]  Ivo Düntsch,et al.  Approximation Operators in Qualitative Data Analysis , 2003, Theory and Applications of Relational Structures as Knowledge Instruments.

[5]  Tamás Mihálydeák,et al.  Similarity Based Rough Sets with Annotation , 2018, IJCSR.

[6]  Daniel Delic,et al.  Improving the Quality of Association Rule Mining by Means of Rough Sets , 2002 .

[7]  Jerzy W. Grzymala-Busse,et al.  LERS-A System for Learning from Examples Based on Rough Sets , 1992, Intelligent Decision Support.

[8]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[9]  Decui Liang,et al.  Decision-Theoretic Rough Sets with Probabilistic Distribution , 2012, RSKT.

[10]  Zoltán Csajbók,et al.  Partial approximative set theory: A generalization of the rough set theory , 2010, 2010 International Conference of Soft Computing and Pattern Recognition.

[11]  Martin Aigner,et al.  Enumeration via ballot numbers , 2008, Discret. Math..

[12]  Paulo Martins Engel,et al.  Rough Clustering: An Alternative to Find Meaningful Clusters by Using the Reducts from a Dataset , 2002, Rough Sets and Current Trends in Computing.

[13]  Tamás Mihálydeák,et al.  Different Types of Search Algorithms for Rough Sets , 2019, Acta Cybern..

[14]  Degang Chen,et al.  Novel algorithms of attribute reduction with variable precision rough set model , 2014, Neurocomputing.

[15]  W. Zakowski APPROXIMATIONS IN THE SPACE (U,π) , 1983 .

[16]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[17]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[18]  Rafael Bello,et al.  Improving the k-NN method: Rough Set in edit training set , 2006, IFIP PPAI.

[19]  László Aszalós,et al.  Iterative Set Approximations Based on Tolerance Relation , 2019, IJCRS.

[20]  B. Bollobás The evolution of random graphs , 1984 .

[21]  Rafael Bello,et al.  Rough Sets in Machine Learning: A Review , 2017 .

[22]  László Aszalós,et al.  Approximation Based on Representatives , 2019, IJCRS.

[23]  Andrzej Lenarcik,et al.  Discretization of Condition Attributes Space , 1992, Intelligent Decision Support.

[24]  Davide Ciucci,et al.  On Definability and Approximations in Partial Approximation Spaces , 2014, RSKT.

[25]  Jason Brownlee,et al.  Clever Algorithms: Nature-Inspired Programming Recipes , 2012 .

[26]  S. K. Michael Wong,et al.  Rough Sets: Probabilistic versus Deterministic Approach , 1988, Int. J. Man Mach. Stud..

[27]  Salvatore Greco,et al.  Fuzzy Similarity Relation as a Basis for Rough Approximations , 1998, Rough Sets and Current Trends in Computing.

[28]  A. Mani,et al.  Choice inclusive general rough semantics , 2011, Inf. Sci..

[29]  Avrim Blum,et al.  Correlation Clustering , 2004, Machine Learning.

[30]  Jugal K. Kalita,et al.  A rough set-based effective rule generation method for classification with an application in intrusion detection , 2013, Int. J. Secur. Networks.

[31]  Dominik Slezak,et al.  The investigation of the Bayesian rough set model , 2005, Int. J. Approx. Reason..

[32]  Yiyu Yao,et al.  Decision-Theoretic Rough Set Models , 2007, RSKT.

[33]  Yiyu Yao Combination of Rough and Fuzzy Sets Based on α-Level Sets , 1997 .

[34]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[35]  Tamás Mihálydeák,et al.  Finding the representative in a cluster using correlation clustering , 2019, Pollack Periodica.

[36]  Andrzej Janusz,et al.  Algorithms for Similarity Relation Learning from High Dimensional Data , 2014, Trans. Rough Sets.

[37]  László Aszalós,et al.  Visualization of tolerance relations , 2018 .

[38]  D. Dubois,et al.  Twofold fuzzy sets and rough sets—Some issues in knowledge representation , 1987 .

[39]  Andrzej Skowron,et al.  Rough set methods in feature selection and recognition , 2003, Pattern Recognit. Lett..

[40]  Yiyu Yao,et al.  Covering based rough set approximations , 2012, Inf. Sci..

[41]  Qinghua Hu,et al.  Neighborhood rough set based heterogeneous feature subset selection , 2008, Inf. Sci..

[42]  L. Hajdu,et al.  On a correlational clustering of integers , 2014, ArXiv.

[43]  Tamás Mihálydeák,et al.  From Vagueness to Rough Sets in Partial Approximation Spaces , 2014, RSEISP.

[44]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[45]  Arthur Zimek,et al.  Correlation clustering , 2009, SKDD.

[46]  Tamás Mihálydeák,et al.  A General Set Theoretic Approximation Framework , 2012, IPMU.

[47]  Yiyu Yao,et al.  Probabilistic Rough Sets , 2015, Handbook of Computational Intelligence.

[48]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[49]  R. Mises,et al.  Praktische Verfahren der Gleichungsauflösung . , 1929 .

[50]  Hung Son Nguyen,et al.  Discretization Problem for Rough Sets Methods , 1998, Rough Sets and Current Trends in Computing.

[51]  David A. Bell,et al.  The rough set approach to association rule mining , 2003, Third IEEE International Conference on Data Mining.

[52]  Andrzej Skowron,et al.  Rough sets: Some extensions , 2007, Inf. Sci..

[53]  Rafael Bello,et al.  A method to build similarity relations into extended Rough Set Theory , 2010, 2010 10th International Conference on Intelligent Systems Design and Applications.

[54]  Z. Néda,et al.  Correlation clustering on networks , 2009 .

[55]  Tamás Mihálydeák,et al.  Similarity Based Rough Sets , 2017, IJCRS.