Integrated quantum optical networks based on quantum dots and photonic crystals

Single solid-state optical emitters have quantum mechanical properties that make them suitable for applications in information processing and sensing. Most of these quantum technologies rely on the capability to integrate the emitters in reliable solid-state optical networks. In this paper, we present integrated devices based on GaAs photonic crystals and InAs self-assembled quantum dots. These quantum networks are well suited to future optoelectronic devices operating at ultralow power levels, single-photon logic devices and quantum information processing.

[1]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[2]  S. Noda,et al.  Recent Progresses and Future Prospects of Two- and Three-Dimensional Photonic Crystals , 2006, Journal of Lightwave Technology.

[3]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[4]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[5]  J. Vučković,et al.  Local temperature control of photonic crystal devices via micron-scale electrical heaters , 2009, 0904.4224.

[6]  Simon J. Devitt,et al.  Photonic module: An on-demand resource for photonic entanglement , 2007, 0706.2226.

[7]  Holger Schmidt,et al.  Strongly Interacting Photons in a Nonlinear Cavity , 1997 .

[8]  Hong-Gyu Park,et al.  Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots. , 2008, Optics express.

[9]  Andrei Faraon,et al.  Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity. , 2009, Physical review letters.

[10]  B.J. Eggleton,et al.  Local tuning of photonic crystal cavities using chalcogenide glasses , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[11]  E. L. Hu,et al.  Tuning photonic nanocavities by atomic force microscope nano-oxidation , 2006 .

[12]  D. Englund,et al.  Dipole induced transparency in waveguide coupled photonic crystal cavities , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[13]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[14]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[15]  G. Medeiros-Ribeiro,et al.  Electron and hole energy levels in InAs self‐assembled quantum dots , 1995 .

[16]  Susumu Noda,et al.  Trapping and emission of photons by a single defect in a photonic bandgap structure , 2000, Nature.

[17]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[18]  Katherine Truex,et al.  Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. , 2010, Physical review letters.

[19]  B. Gerardot,et al.  Voltage-controlled optics of a quantum dot. , 2004, Physical review letters.

[20]  D. Englund,et al.  Efficient photonic crystal cavity-waveguide couplers , 2006, physics/0610105.

[21]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[22]  Christian Schneider,et al.  Lithographic alignment to site-controlled quantum dots for device integration , 2008 .

[23]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[24]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[25]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[26]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[27]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[28]  M. Amann,et al.  Electrically probing photonic bandgap phenomena in contacted defect nanocavities , 2007, 0709.2121.

[29]  P. Michler Single quantum dots : fundamentals, applications, and new concepts , 2003 .

[30]  Dirk Englund,et al.  Local quantum dot tuning on photonic crystal chips , 2007 .

[31]  K. Vahala Optical microcavities , 2003, Nature.

[32]  Bryan Ellis,et al.  Electrically controlled modulation in a photonic crystal nanocavity. , 2009, Optics express.

[33]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[34]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.