Variable Neighborhood Search

Variable neighborhood search (VNS) is a metaheuristic for solving combinatorial and global optimization problems whose basic idea is a systematic change of neighborhood both within a descent phase to find a local optimum and in a perturbation phase to get out of the corresponding valley. In this chapter we present the basic schemes of VNS and some of its extensions. We then describe a recent development, i.e., formulation space search. We then present five families of applications in which VNS has proven to be very successful: (i) exact solution of large-scale location problems by primal–dual VNS; (ii) generation of feasible solutions to large mixed integer linear programs by hybridization of VNS and local branching; (iii) generation of good feasible solutions to continuous nonlinear programs; (iv) generation of feasible solutions and/or improved local optima for mixed integer nonlinear programs by hybridization of sequential quadratic programming and branch and bound within a VNS framework, and (v) exploration of graph theory to find conjectures, refutations, and proofs or ideas of proofs.

[1]  R. Ravi,et al.  Approximation Algorithms for the Traveling Purchaser Problem and its Variants in Network Design , 1999, ESA.

[2]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[3]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[4]  Ishfaq Ahmad,et al.  Efficient Scheduling of Arbitrary TAsk Graphs to Multiprocessors Using a Parallel Genetic Algorithm , 1997, J. Parallel Distributed Comput..

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Pierre Hansen,et al.  An Interior Point Algorithm for Minimum Sum-of-Squares Clustering , 1997, SIAM J. Sci. Comput..

[8]  R. Kolisch,et al.  Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis , 1999 .

[9]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[10]  Paul Shaw,et al.  Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems , 1998, CP.

[11]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[12]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[13]  Harish C. Bahl,et al.  Capacitated lot-sizing and scheduling by Lagrangean relaxation , 1992 .

[14]  M. Kendall,et al.  The Logic of Scientific Discovery. , 1959 .

[15]  M Dorigo,et al.  Ant colonies for the quadratic assignment problem , 1999, J. Oper. Res. Soc..

[16]  Rafael Martí,et al.  Intensification and diversification with elite tabu search solutions for the linear ordering problem , 1999, Comput. Oper. Res..

[17]  P. Hansen,et al.  Variable neighborhood search for the p-median , 1997 .

[18]  M. Randic Characterization of molecular branching , 1975 .

[19]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[20]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[21]  Miroslav L. Dukic,et al.  A Method of a Spread-Spectrum Radar Polyphase Code Design , 1990, IEEE J. Sel. Areas Commun..

[22]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[23]  M. Ehrgott,et al.  Heuristics for the K-Cardinality Tree and Subgraph Problems , 1996 .

[24]  P. Hansen,et al.  Trees with Palindromic Hosoya Polynomials , 1999 .

[25]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[26]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[27]  P. Hansen,et al.  Alkanes with small and large Randić connectivity indices , 1999 .

[28]  R. E. Griffith,et al.  A Nonlinear Programming Technique for the Optimization of Continuous Processing Systems , 1961 .

[29]  Gilbert Laporte,et al.  New Insertion and Postoptimization Procedures for the Traveling Salesman Problem , 1992, Oper. Res..

[30]  Ric,et al.  Adaptive Memories for the Quadratic Assignment Problem , 1997 .

[31]  Pierre Hansen,et al.  Variable Neighborhood Search for Extremal Graphs. 2. Finding Graphs with Extremal Energy , 1998, J. Chem. Inf. Comput. Sci..

[32]  Polly Bart,et al.  Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph , 1968, Oper. Res..

[33]  Dominique Peeters,et al.  Chapter 7 Location on networks , 1995 .

[34]  Pierre Hansen,et al.  Finding Relations in Polynomial Time , 1999, IJCAI.

[35]  M. Goetschalckx,et al.  The vehicle routing problem with backhauls , 1989 .

[36]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[37]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[38]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[39]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[40]  Siemion Fajtlowicz,et al.  On conjectures of Graffiti , 1988, Discret. Math..

[41]  William W. Trigeiro,et al.  Capacitated lot sizing with setup times , 1989 .

[42]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[43]  R. Jancey Multidimensional group analysis , 1966 .

[44]  Michel Gendreau,et al.  A View of Local Search in Constraint Programming , 1996, CP.

[45]  Panos M. Pardalos,et al.  Approximate solution of weighted MAX-SAT problems using GRASP , 1996, Satisfiability Problem: Theory and Applications.

[46]  M. G. A. Verhoeven,et al.  Parallel local search for Steiner trees in graphs , 1999, Ann. Oper. Res..

[47]  Armin Scholl,et al.  Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem , 1997, Comput. Oper. Res..

[48]  Nenad Mladenović,et al.  An Introduction to Variable Neighborhood Search , 1997 .

[49]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[50]  É. Taillard,et al.  Adaptive memories for the Quadratic Assignment Problems , 1997 .

[51]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[52]  Pierre Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1998, Comput. Chem..

[53]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[54]  Edmund K. Burke,et al.  A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem , 1998, SEAL.

[55]  R. A. Whitaker,et al.  A Fast Algorithm For The Greedy Interchange For Large-Scale Clustering And Median Location Problems , 1983 .

[56]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[57]  Sven Leyffer,et al.  Numerical Experience with Lower Bounds for MIQP Branch-And-Bound , 1998, SIAM J. Optim..

[58]  José D. P. Rolim,et al.  Optimal Cutwidths and Bisection Widths of 2- and 3-Dimensional Meshes , 1995, WG.

[59]  Sartaj Sahni,et al.  Heuristics for backplane ordering , 1987 .

[60]  Gary James Jason,et al.  The Logic of Scientific Discovery , 1988 .

[61]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[62]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[63]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[64]  P. Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1999, Comput. Chem..

[65]  Philip E. Gill,et al.  Practical optimization , 1981 .

[66]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[67]  Stefan Voß Dynamic tabu search strategies for the traveling purchaser problem , 1996, Ann. Oper. Res..

[68]  Michel Gendreau,et al.  A Constraint Programming Framework for Local Search Methods , 1999, J. Heuristics.

[69]  Michel Gendreau,et al.  The Traveling Salesman Problem with Backhauls , 1996, Comput. Oper. Res..

[70]  J. Beasley A note on solving large p-median problems , 1985 .

[71]  Jeffrey D. Ullman,et al.  NP-Complete Scheduling Problems , 1975, J. Comput. Syst. Sci..

[72]  J. M. Moreno-Vega,et al.  THE CHAIN-INTERCHANGE HEURISTIC METHOD1 , 1996 .

[73]  Ching-Tang Hsieh,et al.  Generalized Fuzzy Kohonen Clustering Networks , 1998 .

[74]  O. Araujo,et al.  Some Bounds for the Connectivity Index of a Chemical Graph , 1998, J. Chem. Inf. Comput. Sci..

[75]  Imtiaz Ahmad,et al.  Multiprocessor Scheduling in a Genetic Paradigm , 1996, Parallel Comput..

[76]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[77]  Nenad Mladenović,et al.  A Variable Neighbourhood Algorithm for Solving the Continuous Location-Allocation Problem , 1995 .

[78]  É. Taillard,et al.  Improvements and Comparison of Heuristics for solving the Multisource Weber Problem , 1997 .

[79]  Donald Erlenkotter,et al.  A Dual-Based Procedure for Uncapacitated Facility Location , 1978, Oper. Res..

[80]  Matteo Fischetti,et al.  Weighted k-cardinality trees: Complexity and polyhedral structure , 1994, Networks.

[81]  Jacques Desrosiers,et al.  Crew Pairing at Air France , 1993 .

[82]  M. Cangalovic,et al.  TABU search methodology in global optimization , 1999 .

[83]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[84]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .