A tight-binding study of single-atom transistors.
暂无分享,去创建一个
Gerhard Klimeck | Hoon Ryu | Suddhasatta Mahapatra | Sunhee Lee | H. Ryu | Gerhard Klimeck | L. Hollenberg | S. Mahapatra | M. Simmons | J. Miwa | Sunhee Lee | Martin Fuechsle | Jill A Miwa | Lloyd C L Hollenberg | Michelle Y Simmons | M. Fuechsle
[1] Fabio Beltram,et al. Empirical spds^* tight-binding calculation for cubic semiconductors : general method and material parameters , 1998 .
[2] Gerhard Klimeck,et al. Valence band effective-mass expressions in the sp 3 d 5 s * empirical tight-binding model applied to a Si and Ge parametrization , 2004 .
[3] Michelle Y. Simmons,et al. One-dimensional conduction properties of highly phosphorus-doped planar nanowires patterned by scanning probe microscopy , 2007 .
[4] Gerhard Klimeck,et al. Valley splitting in strained silicon quantum wells modeled with 2° miscuts, step disorder, and alloy disorder , 2007 .
[5] Michelle Y. Simmons,et al. Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy , 2004 .
[6] Michelle Y. Simmons,et al. Electronic properties of atomically abrupt tunnel junctions in silicon , 2007 .
[7] Insoo Woo,et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET , 2008 .
[8] T. C. Mcgill,et al. EFFICIENT, NUMERICALLY STABLE MULTIBAND K.P TREATMENT OF QUANTUM TRANSPORTIN SEMICONDUCTOR HETEROSTRUCTURES , 1996 .
[9] G. J. Milburn,et al. Charge-based quantum computing using single donors in semiconductors , 2004 .
[10] Michelle Y. Simmons,et al. Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. , 2009, Nano letters.
[11] Gerhard Klimeck,et al. On the Validity of the Parabolic Effective-Mass Approximation for the Current-Voltage Calculation of , 2005 .
[12] Yia-Chung Chang,et al. Theoretical study of phosphorousδ-doped silicon for quantum computing , 2005 .
[13] Gerhard Klimeck,et al. Quantitative simulation of a resonant tunneling diode , 1997, Journal of Applied Physics.
[14] M. Lundstrom,et al. On the validity of the parabolic effective-mass approximation for the I-V calculation of silicon nanowire transistors , 2005, IEEE Transactions on Electron Devices.
[15] A. K. Ramdas,et al. Linewidths of the electronic excitation spectra of donors in silicon , 1981 .
[16] Takahiro Shinada,et al. Enhancing semiconductor device performance using ordered dopant arrays , 2005, Nature.
[17] Sunhee Lee,et al. Atomistic modeling of metallic nanowires in silicon. , 2013, Nanoscale.
[18] H. Ryu,et al. Electronic structure of realistically extended atomistically resolved disordered Si:P δ-doped layers , 2011 .
[19] T. Boykin,et al. Atomistic Simulation of Realistically Sized Nanodevices Using NEMO 3-D—Part I: Models and Benchmarks , 2007, IEEE Transactions on Electron Devices.
[20] Datta,et al. Elastic and inelastic scattering in quantum dots in the Coulomb-blockade regime. , 1994, Physical review. B, Condensed matter.
[21] H. Ryu,et al. Ohm’s Law Survives to the Atomic Scale , 2012, Science.
[22] A. Asenov,et al. 3-D Nonequilibrium Green's Function Simulation of Nonperturbative Scattering From Discrete Dopants in the Source and Drain of a Silicon Nanowire Transistor , 2009, IEEE Transactions on Nanotechnology.
[23] D. Eigler,et al. Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.
[24] M. Y. Simmons,et al. A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).
[25] T. Boykin,et al. Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory , 2002 .
[26] Gerhard Klimeck,et al. High precision quantum control of single donor spins in silicon. , 2007, Physical review letters.
[27] M. Taniguchi,et al. D- state in silicon , 1976 .
[28] Adrian Stoica,et al. Si Tight-Binding Parameters from Genetic Algorithm Fitting , 2000 .