Polynomial real root finding in Bernstein form

This dissertation presents pre-conditioning, isolation, and approximation concepts pertaining to finding the real roots of a polynomial in Bernstein form over a specified domain. Subdivision of a polynomial into smaller intervals prior to coefficient construction significantly improves the accuracy of the approximated roots as compared to "a posteriori" subdivision after the coefficients are generated. Real root isolation and approximation strategies are presented that exploit various properties of the Bernstein representation to compute the real roots of polynomials in Bernstein form. The numerical performance of these strategies is compared with other existing Bernstein and power form polynomial real root-finding strategies.

[1]  Joseph F. Traub,et al.  Principles for Testing Polynomial Zerofinding Programs , 1975, TOMS.

[2]  Pat Hanrahan,et al.  Ray tracing algebraic surfaces , 1983, SIGGRAPH.

[3]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[4]  E. Bodewig,et al.  On types of convergence and on the behavior of approximations in the neighborhood of a multiple root of an equation , 1949 .

[5]  W. Burnside,et al.  The Theory of Equations: with an Introduction to the Theory of Binary Algebraic Forms , 2005, Nature.

[6]  G. Loizou,et al.  Locating multiple zeros interactively , 1985 .

[7]  J. Vignes,et al.  Error Analysis in Computing , 1974, IFIP Congress.

[8]  Jean Vignes,et al.  An efficient implementation of optimization algorithms , 1984 .

[9]  Françoise Chatelin,et al.  CESTAC, A TOOL FOR A STOCHASTIC ROUND-OFF ERROR ANALYSIS IN SCIENTIFIC COMPUTING , 1986 .

[10]  D.C. Anderson,et al.  Implicitization, inversion, and intersection of planar rational cubic curves , 1985, Comput. Vis. Graph. Image Process..

[11]  G. M. Introduction to Higher Algebra , 1908, Nature.

[12]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[13]  A. Booth Numerical Methods , 1957, Nature.

[15]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[16]  Jochen Schwarze Cubic and quartic roots , 1990 .

[17]  J. Faye,et al.  Stochastic approach of the permutation-perturbation method for round-off error analysis , 1985 .

[18]  P. J. Plauger The Standard C Library , 1991 .

[19]  Rida T. Farouki,et al.  On the numerical condition of Bernstein-Bézier subdivision processes , 1990 .

[20]  Eldon Hansen,et al.  A globally convergent interval method for computing and bounding real roots , 1978 .

[21]  Werner Burkhardt,et al.  Solution of equations , 1994 .

[22]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[23]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Irene Gargantini,et al.  The numerical stability of simultaneous iterations via square-rooting , 1979 .

[25]  W. Wells,et al.  Modern higher algebra , 2022 .

[26]  Stephen M. Pizer,et al.  To compute numerically : concepts and strategies , 1983 .

[27]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[28]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[29]  Thomas W. Sederberg,et al.  Ray tracing of Steiner patches , 1984, SIGGRAPH.

[30]  Chris Phillips,et al.  Computational numerical methods , 1986 .

[31]  S. Rump Polynomial minimum root separation , 1979 .

[32]  Forman S. Acton,et al.  Numerical methods that work , 1970 .

[33]  J. Vignes New methods for evaluating the validity of the results of mathematical computations , 1978 .

[34]  Alyn P. Rockwood Accurate display of tensor product isosurfaces , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[35]  Pat H. Sterbenz,et al.  Floating-point computation , 1973 .

[36]  W. Burnside,et al.  Theory of equations , 1886 .

[37]  Eldon Hansen,et al.  Topics in Interval Analysis , 1969 .

[38]  Tomoyuki Nishita,et al.  Ray tracing trimmed rational surface patches , 1990, SIGGRAPH.

[39]  M. Marden Geometry of Polynomials , 1970 .

[40]  James Pierpont An Introduction to the Modern Theory of Equations , 1905 .

[41]  Peter Henrici,et al.  Essentials of numerical analysis, with pocket calculator demonstrations , 1982 .

[42]  Shih-Nge Lin A Method of Successive Approximations of evaluating the Real and Complex Roots of Cubic and Higher‐Order Equations , 1941 .

[43]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[44]  Donna K. Dunaway Calculation of Zeros of a Real Polynomial Through Factorization Using Euclid’s Algorithm , 1974 .

[45]  Donald I. Good,et al.  Computer Interval Arithmetic: Definition and Proof of Correct Implementation , 1970, JACM.

[46]  Miodrag S. Petković,et al.  Iterative Methods for Simultaneous Inclusion of Polynomial Zeros , 1989 .

[47]  Lee E. Heindel,et al.  Integer arithmetic algorithms for polynomial real zero determination , 1971, SYMSAC '71.

[48]  A. Mishina,et al.  Higher algebra: linear algebra, polynomials, general algebra , 1965 .

[49]  R. Farouki,et al.  The bisector of a point and a plane parametric curve , 1994, Comput. Aided Geom. Des..

[50]  Ramon E. Moore A Test for Existence of Solutions to Nonlinear Systems , 1977 .

[51]  Jean Vignes,et al.  A software for evaluating local accuracy in the fourier transform , 1980 .

[52]  Christian Bouville,et al.  Generating High Quality Pictures by Ray‐Tracing , 1985, Comput. Graph. Forum.

[53]  E. Hansen,et al.  An interval Newton method , 1983 .

[54]  Marc Daniel,et al.  The numerical problem of using Bézier curves and surfaces in the power basis , 1989, Comput. Aided Geom. Des..

[55]  G. Stewart Introduction to matrix computations , 1973 .

[56]  Rida T. Farouki,et al.  On the stability of transformations between power and Bernstein polynomial forms , 1991, Comput. Aided Geom. Des..

[57]  P. Henrici,et al.  Circular arithmetic and the determination of polynomial zeros , 1971 .

[58]  Shinemin Lin A Method for Finding Roots of Algebraic Equations , 1943 .

[59]  Jon G. Rokne,et al.  Complex interval arithmetic , 1971, CACM.

[60]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[61]  Rida T. Farouki,et al.  Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..

[62]  James T. Kajiya,et al.  Ray tracing parametric patches , 1982, SIGGRAPH.

[63]  Terence R. F. Nonweiler Computational Mathematics: An Introduction to Numerical Approximation , 1984 .

[64]  L. Dickson First Course in the Theory of Equations , 1922, Nature.

[65]  G. J. Borse,et al.  Fortran 77 and Numerical Methods for Engineers , 1985 .

[66]  M. A. Jenkins,et al.  A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration , 1970 .

[67]  Charles C. Lee,et al.  Determination of zeros of polynomials by synthetic division , 1979 .

[68]  Thomas W. Sederberg,et al.  Fat arcs: A bounding region with cubic convergence , 1989, Comput. Aided Geom. Des..

[69]  Willard L. Miranker,et al.  Computer arithmetic in theory and practice , 1981, Computer science and applied mathematics.

[70]  Thomas W. Sederberg Piecewise algebraic surface patches , 1985, Comput. Aided Geom. Des..

[71]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[72]  Richard W. Hamming,et al.  Introduction to Applied Numerical Analysis. , 1971 .

[73]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[74]  Donna Kastle Dunaway A composite algorithm for finding zeros of real polynomials , 1972 .

[75]  Richard J. Hanson Automatic Error Bounds for Real Roots of Polynomials Having Interval Coefficients , 1970, Comput. J..

[76]  J. A. Grant,et al.  The Solution of Polynomial Equations in Interval Arithmetic , 1973, Comput. J..

[77]  T. Sederberg,et al.  Comparison of three curve intersection algorithms , 1986 .

[79]  L. Hesselholt,et al.  Higher Algebra , 1937, Nature.

[80]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[81]  A Consistently Rapid Algorithm for Solving Polynomial Equations , 1976 .

[82]  James Hardy Wilkinson,et al.  The evaluation of the zeros of ill-conditioned polynomials. Part I , 1959, Numerische Mathematik.

[83]  John M. Mulvey,et al.  On Reporting Computational Experiments with Mathematical Software , 1979, TOMS.

[84]  Webb Miller Computer Search for Numerical Instability , 1975, JACM.

[85]  S. S. McNeary Introduction to Computational Methods for Students of Calculus , 1972 .

[86]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[87]  J. H. Wilkinson The evaluation of the zeros of ill-conditioned polynomials. Part II , 1959, Numerische Mathematik.

[88]  Don Herbison-Evans,et al.  Solving Quartics and Cubics for Graphics , 1995 .

[89]  Tomoyuki Nishita,et al.  Curve intersection using Bézier clipping , 1990, Comput. Aided Des..

[90]  Jarke J. van Wijk,et al.  Ray tracing objects defined by sweeping a sphere , 1984, Comput. Graph..

[91]  John R. Rice,et al.  Numerical methods, software, and analysis , 1983 .

[92]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[93]  M. A. Jenkins,et al.  Algorithm 493: Zeros of a Real Polynomial [C2] , 1975, TOMS.

[94]  Daniel D. McCracken,et al.  Numerical methods with Fortran IV case studies , 1967 .

[95]  Richard P. Brent,et al.  An Algorithm with Guaranteed Convergence for Finding a Zero of a Function , 1971, Comput. J..

[96]  Ron Goldman,et al.  Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves , 1984, Comput. Aided Geom. Des..

[97]  T. Pavlidis Algorithms for Graphics and Image Processing , 1981, Springer Berlin Heidelberg.

[98]  Rüdiger Loos,et al.  Polynomial real root isolation by differentiation , 1976, SYMSAC '76.

[99]  David K. Smith,et al.  Numerical Computing and Mathematical Analysis , 1976 .

[100]  David P. Dobkin,et al.  Applied Computational Geometry: Towards Robust Solutions of Basic Problems , 1990, J. Comput. Syst. Sci..

[101]  P. McAree,et al.  Using Sturm sequences to bracket real roots of polynomial equations , 1990 .

[102]  John Ll. Morris Computational Methods in Elementary Numerical Analysis , 1983 .

[103]  J. H. Wilkinson,et al.  Practical Problems Arising in the Solution of Polynomial Equations , 1971 .

[104]  J. Miller Numerical Analysis , 1966, Nature.

[105]  R. Alt THE USE OF THE CESTAC METHOD IN THE PARALLEL COMPUTATION OF ROOTS OF POLYNOMIALS , 1986 .

[106]  CORPORATE Computer Science and Telecommunications Board,et al.  Academic careers for experimental computer scientists and engineers , 1994, CACM.

[107]  Oved Shisha,et al.  The Bernstein form of a polynomial , 1966 .

[108]  T. Sederberg Algorithm for algebraic curve intersection , 1989 .

[109]  Rida T. Farouki,et al.  The characterization of parametric surface sections , 1986, Comput. Vis. Graph. Image Process..

[110]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[111]  S. Klasa,et al.  Polynomial scaling , 1990 .

[112]  Allan Borodin,et al.  Efficient Evaluation of Polynomial Forms , 1972, J. Comput. Syst. Sci..

[113]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[114]  James P. Ignizio,et al.  On the Establishment of Standards for Comparing Algorithm Performance , 1971 .

[115]  H. Van de Vel A Note on the Automatic Pretreatment of Polynomials , 1970, Comput. J..