How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise

In theory, the sum of squares of log returns sampled at high frequency estimates their variance. When market microstructure noise is present but unaccounted for, however, we show that the optimal sampling frequency is finite and derive its closed-form expression. But even with optimal sampling, using say five minute returns when transactions are recorded every second, a vast amount of data is discarded, in contradiction to basic statistical principles. We demonstrate that modelling the noise and using all the data is a better solution, even if one misspecifies the noise distribution. So the answer is: sample as often as possible.

[1]  Zhou Zhou,et al.  “A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data” , 2005 .

[2]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[3]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[4]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[5]  GenÇay Ramazan,et al.  Real-Time Trading Models and the Statistical Properties of Foreign Exchange Rates*: REAL-TIME TRADING MODELS , 2002 .

[6]  Yacine Ait-Sahalia,et al.  The Effects of Random and Discrete Sampling When Estimating Continuous-Time Diffusions , 2002 .

[7]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[8]  Peter C. B. Phillips,et al.  Fully Nonparametric Estimation of Scalar Diffusion Models , 2001 .

[9]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[10]  Jean Jacod,et al.  Diffusions with measurement errors. I. Local Asymptotic Normality , 2001 .

[11]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[12]  G. Mason,et al.  Beyond Merton’s Utopia: Effects of Non-normality and Dependence on the Precision of Variance Estimates Using High-frequency Financial Data , 2000 .

[13]  R. Gencay,et al.  Real-Time Trading Models and the Statistical Properties of Foreign Exchange Rates , 1998 .

[14]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[15]  Laura T. Starks,et al.  Return autocorrelation and institutional investors , 1997 .

[16]  S. Delattre,et al.  A central limit theorem for normalized functions of the increments of a diffusion process, in the presence of round-off errors , 1997 .

[17]  C. Heyde,et al.  Quasi-likelihood and its application , 1997 .

[18]  Ananth N. Madhavan,et al.  Why Do Security Prices Change? A Transaction-Level Analysis of Nyse Stocks , 1996 .

[19]  J. Jacod,et al.  La Variation Quadratique du Brownien en Pre'sence d''Erreurs d''Arrondi , 1996 .

[20]  Yacine Aït-Sahalia Nonparametric Pricing of Interest Rate Derivative Securities , 1995 .

[21]  John N. Haddad On the closed form of the likelihood function of the first order moving average model , 1995 .

[22]  Hendrik Bessembinder,et al.  Bid-ask spreads in the interbank foreign exchange markets☆ , 1994 .

[23]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[24]  Joel Hasbrouck,et al.  Assessing the Quality of a Security Market: A New Approach to Transaction-Cost Measurement , 1993 .

[25]  Maureen O'Hara,et al.  Time and the Process of Security Price Adjustment , 1992 .

[26]  M. Nimalendran,et al.  Components of short-horizon individual security returns , 1991 .

[27]  M. Nimalendran,et al.  Price reversals : Bid-ask errors or market overreaction? , 1990 .

[28]  L. Harris Estimation of Stock Price Variances and Serial Covariances from Discrete Observations , 1990 .

[29]  Lawrence Harris,et al.  Statistical Properties of the Roll Serial Covariance Bid/Ask Spread Estimator , 1990 .

[30]  A. Lo,et al.  An Econometric Analysis of Nonsynchronous Trading , 1989 .

[31]  Kuldeep Shastri,et al.  On the Estimation of Bid-Ask Spreads: Theory and Evidence , 1988, Journal of Financial and Quantitative Analysis.

[32]  Lawrence Harris,et al.  Estimating the components of the bid/ask spread , 1988 .

[33]  Lawrence R. Glosten,et al.  Components of the Bid-Ask Spread and the Statistical Properties of Transaction Prices , 1987 .

[34]  P. McCullagh Tensor Methods in Statistics , 1987 .

[35]  K. French,et al.  Stock return variances: The arrival of information and the reaction of traders , 1986 .

[36]  R. Kenneth,et al.  FRENCH, and . Stock return variances: The arrival of information and the reaction of traders, Journal of Financial Economics, , . , 1986 .

[37]  Gary Gottlieb,et al.  Implications of the Discreteness of Observed Stock Prices , 1985 .

[38]  Thomas MaCurdy,et al.  The use of time series processes to model the error structure of earnings in a longitudinal data analysis , 1982 .

[39]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[40]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[41]  Åke Björck,et al.  Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.

[42]  M. Harrison Theories of Abstract Automata. Michael A. Arbib. Prentice-Hall, Englewood Cliffs, N.J., 1969. xviii, 414 pp., illus. $14.95. Prentice-Hall Series in Automatic Computation , 1970 .

[43]  P. Shaman ON THE INVERSE OF THE COVARIANCE MATRIX OF A FIRST-ORDER MOVING AVERAGE. , 1969 .

[44]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[45]  J. Proudfoot,et al.  Noise , 1931, The Indian medical gazette.