On the Symmetric Negabent Boolean Functions
暂无分享,去创建一个
[1] Matthew G. Parker,et al. One and Two-Variable Interlace Polynomials: A Spectral Interpretation , 2005, WCC.
[2] Matthew G. Parker,et al. Negabent Functions in the Maiorana-McFarland Class , 2008, SETA.
[3] Matthew G. Parker,et al. On Boolean Functions Which Are Bent and Negabent , 2007, SSC.
[4] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[5] M. Parker. Constabent properties of Golay-Davis-Jedwab sequences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[6] O. S. Rothaus,et al. On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.
[7] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[8] Matthew G. Parker,et al. Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.
[9] Solomon W. Golomb,et al. Sequences, Subsequences, and Consequences, International Workshop, SSC 2007, Los Angeles, CA, USA, May 31 - June 2, 2007, Revised Invited Papers , 2007, SSC.
[10] Petr Savický. On the Bent Boolean Functions That are Symmetric , 1994, Eur. J. Comb..