Experimental evidence for the mechanism of subcritical vortex-induced vibration

[1]  Chuanqiang Gao,et al.  The key to suppress vortex-induced vibration: Stability of the structural mode , 2022, Journal of Fluids and Structures.

[2]  Zhihui Xiao,et al.  Effects of cavitation on vortex-induced vibration of a flexible circular cylinder simulated by fluid-structure interaction method , 2022, Journal of Hydrodynamics.

[3]  J. Kou,et al.  An experimental modal testing method for subcritical flow around a cylinder , 2022, Physics of Fluids.

[4]  F. Lien,et al.  Mode transformation and interaction in vortex-induced vibration of laminar flow past a circular cylinder , 2022, Physics of Fluids.

[5]  Weiwei Zhang,et al.  Data-driven modeling for unsteady aerodynamics and aeroelasticity , 2021, Progress in Aerospace Sciences.

[6]  A.J. Torregrosa,et al.  On the application of artificial neural network for the development of a nonlinear aeroelastic model , 2021 .

[7]  J. Rothstein,et al.  Experimental evidence of vortex-induced vibrations at subcritical Reynolds numbers , 2021, Journal of Fluid Mechanics.

[8]  R. Bourguet Vortex-induced vibrations of a flexible cylinder at subcritical Reynolds number , 2020, Journal of Fluid Mechanics.

[9]  Jiasong Wang,et al.  A review on flow-induced vibration of offshore circular cylinders , 2020, Journal of Hydrodynamics.

[10]  Zhao Liu,et al.  Nonlinear unsteady bridge aerodynamics: Reduced-order modeling based on deep LSTM networks , 2020 .

[11]  C. Williamson,et al.  Vortex-Induced Vibrations , 2004, Wind Effects on Structures.

[12]  Rajeev K. Jaiman,et al.  Model reduction and mechanism for the vortex-induced vibrations of bluff bodies , 2017, Journal of Fluid Mechanics.

[13]  Weiwei Zhang,et al.  The lowest Reynolds number of vortex-induced vibrations , 2017 .

[14]  Weiwei Zhang,et al.  An improved criterion to select dominant modes from dynamic mode decomposition , 2017 .

[15]  Weiwei Zhang,et al.  Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers , 2015, Journal of Fluid Mechanics.

[16]  Weiwei Zhang,et al.  Unsteady aerodynamic reduced-order modeling of an aeroelastic wing using arbitrary mode shapes , 2015 .

[17]  A. Jirásek,et al.  Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics , 2014 .

[18]  Y. Xiang,et al.  Vortex-induced vibration (VIV) of a circular cylinder in combined steady and oscillatory flow , 2013 .

[19]  André L. C. Fujarra,et al.  One and two degrees-of-freedom Vortex-Induced Vibration experiments with yawed cylinders , 2013 .

[20]  Charles H. K. Williamson,et al.  An experimental investigation of vortex-induced vibration with nonlinear restoring forces , 2013 .

[21]  John Sheridan,et al.  The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack , 2012, Journal of Fluid Mechanics.

[22]  R. Violette,et al.  A linear stability approach to vortex-induced vibrations and waves , 2010 .

[23]  Richard H. J. Willden,et al.  Three distinct response regimes for the transverse Vortex-Induced Vibrations of circular cylinders at low Reynolds numbers , 2006 .

[24]  Haym Benaroya,et al.  An overview of modeling and experiments of vortex-induced vibration of circular cylinders , 2005 .

[25]  L. Morino,et al.  ON THE INSTABILITY OF A SPRING-MOUNTED CIRCULAR CYLINDER IN A VISCOUS FLOW AT LOW REYNOLDS NUMBERS , 2000 .

[26]  P. Bearman VORTEX SHEDDING FROM OSCILLATING BLUFF BODIES , 1984 .

[27]  R. D. Blevins,et al.  Flow-induced vibration in nuclear reactors: A review , 1979 .