GWASdb v2: an update database for human genetic variants identified by genome-wide association studies

Genome-wide association studies (GWASs), now as a routine approach to study single-nucleotide polymorphism (SNP)-trait association, have uncovered over ten thousand significant trait/disease associated SNPs (TASs). Here, we updated GWASdb (GWASdb v2, http://jjwanglab.org/gwasdb) which provides comprehensive data curation and knowledge integration for GWAS TASs. These updates include: (i) Up to August 2015, we collected 2479 unique publications from PubMed and other resources; (ii) We further curated moderate SNP-trait associations (P-value < 1.0×10−3) from each original publication, and generated a total of 252 530 unique TASs in all GWASdb v2 collected studies; (iii) We manually mapped 1610 GWAS traits to 501 Human Phenotype Ontology (HPO) terms, 435 Disease Ontology (DO) terms and 228 Disease Ontology Lite (DOLite) terms. For each ontology term, we also predicted the putative causal genes; (iv) We curated the detailed sub-populations and related sample size for each study; (v) Importantly, we performed extensive function annotation for each TAS by incorporating gene-based information, ENCODE ChIP-seq assays, eQTL, population haplotype, functional prediction across multiple biological domains, evolutionary signals and disease-related annotation; (vi) Additionally, we compiled a SNP-drug response association dataset for 650 pharmacogenetic studies involving 257 drugs in this update; (vii) Last, we improved the user interface of website.

[1]  S. Batzoglou,et al.  Linking disease associations with regulatory information in the human genome , 2012, Genome research.

[2]  Daniel Rios,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .

[3]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[4]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[5]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[6]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[7]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[8]  M. Khoury,et al.  A navigator for human genome epidemiology , 2008, Nature Genetics.

[9]  François Schiettecatte,et al.  OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders , 2014, Nucleic Acids Res..

[10]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[11]  Gang Fu,et al.  Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data , 2014, Nucleic Acids Res..

[12]  Lon Phan,et al.  Phenotype–Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources , 2013, European Journal of Human Genetics.

[13]  Mustafa Tekin,et al.  The promise of whole-exome sequencing in medical genetics , 2013, Journal of Human Genetics.

[14]  N. Campbell Genetic association database , 2004, Nature Reviews Genetics.

[15]  Michel Eichelbaum,et al.  Pharmacogenomics and individualized drug therapy. , 2006, Annual review of medicine.

[16]  J. Barrett,et al.  Strategies for fine-mapping complex traits , 2015, Human molecular genetics.

[17]  David Haussler,et al.  The UCSC Genome Browser database: 2014 update , 2013, Nucleic Acids Res..

[18]  Yanan Sun,et al.  DMDM: domain mapping of disease mutations , 2010, Bioinform..

[19]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[20]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[21]  Serafim Batzoglou,et al.  Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++ , 2010, PLoS Comput. Biol..

[22]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[23]  Heng Li,et al.  Tabix: fast retrieval of sequence features from generic TAB-delimited files , 2011, Bioinform..

[24]  E. Boerwinkle,et al.  dbNSFP v2.0: A Database of Human Non‐synonymous SNVs and Their Functional Predictions and Annotations , 2013, Human mutation.

[25]  M. McCarthy,et al.  Genome-wide association studies for complex traits: consensus, uncertainty and challenges , 2008, Nature Reviews Genetics.

[26]  Christian Gieger,et al.  Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. , 2012, American journal of human genetics.

[27]  J. Mullikin,et al.  Genomic features defining exonic variants that modulate splicing , 2010, Genome Biology.

[28]  Mingming Jia,et al.  COSMIC: exploring the world's knowledge of somatic mutations in human cancer , 2014, Nucleic Acids Res..

[29]  P. Radivojac,et al.  MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing , 2014, Genome Biology.

[30]  Mulin Jun Li,et al.  Current trend of annotating single nucleotide variation in humans--A case study on SNVrap. , 2015, Methods.

[31]  A. Brookes,et al.  GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies , 2013, European Journal of Human Genetics.

[32]  Yadong Wang,et al.  The personal genome browser: visualizing functions of genetic variants , 2014, Nucleic Acids Res..

[33]  Yan Cui,et al.  PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways , 2013, Nucleic Acids Res..

[34]  Michael R. Speicher,et al.  A survey of tools for variant analysis of next-generation genome sequencing data , 2013, Briefings Bioinform..

[35]  Peter Kraft,et al.  Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification , 2013, PLoS genetics.

[36]  S. Purcell,et al.  Pleiotropy in complex traits: challenges and strategies , 2013, Nature Reviews Genetics.

[37]  Eric S. Lander,et al.  Identifying Recent Adaptations in Large-Scale Genomic Data , 2013, Cell.

[38]  Rachel Karchin,et al.  Next generation tools for the annotation of human SNPs , 2009, Briefings Bioinform..

[39]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[40]  Pak Chung Sham,et al.  Genetic variant representation, annotation and prioritization in the post-GWAS era , 2012, Cell Research.

[41]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[42]  Pak Chung Sham,et al.  dbPSHP: a database of recent positive selection across human populations , 2013, Nucleic Acids Res..

[43]  Jonathan P. Beauchamp,et al.  GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment , 2013, Science.

[44]  B. Stranger,et al.  Progress and Promise of Genome-Wide Association Studies for Human Complex Trait Genetics , 2011, Genetics.

[45]  C E Lipscomb,et al.  Medical Subject Headings (MeSH). , 2000, Bulletin of the Medical Library Association.

[46]  Peter N. Robinson,et al.  The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease , 2015, American journal of human genetics.

[47]  Joseph K. Pickrell Joint analysis of functional genomic data and genome-wide association studies of 18 human traits , 2013, bioRxiv.

[48]  Michael Cariaso,et al.  SNPedia: a wiki supporting personal genome annotation, interpretation and analysis , 2011, Nucleic Acids Res..

[49]  Gang Feng,et al.  From disease ontology to disease-ontology lite: statistical methods to adapt a general-purpose ontology for the test of gene-ontology associations , 2009, Bioinform..

[50]  Anna Zhukova,et al.  Modeling sample variables with an Experimental Factor Ontology , 2010, Bioinform..

[51]  Wenjie Chen,et al.  GRASP v2.0: an update on the Genome-Wide Repository of Associations between SNPs and phenotypes , 2014, Nucleic Acids Res..

[52]  T. Pandita,et al.  The Proteasome Activator PA200 Regulates Tumor Cell Responsiveness to Glutamine and Resistance to Ionizing Radiation , 2012, Molecular Cancer Research.

[53]  Pak Chung Sham,et al.  GWAS3D: detecting human regulatory variants by integrative analysis of genome-wide associations, chromosome interactions and histone modifications , 2013, Nucleic Acids Res..

[54]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[55]  Mulin Jun Li,et al.  Nature Genetics Advance Online Publication a N a Ly S I S the Support of Human Genetic Evidence for Approved Drug Indications , 2022 .

[56]  M. Vidal,et al.  Selecting causal genes from genome-wide association studies via functionally coherent subnetworks , 2014, Nature Methods.

[57]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[58]  Yang Du,et al.  rSNPBase: a database for curated regulatory SNPs , 2013, Nucleic Acids Res..

[59]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[60]  Bin Yan,et al.  Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression , 2015, Briefings Bioinform..

[61]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .