Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification

This paper deals with the kernel-based approximation of a multivariate periodic function by interpolation at the points of an integration lattice—a setting that, as pointed out by Zeng et al. (Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, New York, 2006) and Zeng et al. (Constr. Approx. 30: 529–555, 2009), allows fast evaluation by fast Fourier transform, so avoiding the need for a linear solver. The main contribution of the paper is the application to the approximation problem for uncertainty quantification of elliptic partial differential equations, with the diffusion coefficient given by a random field that is periodic in the stochastic variables, in the model proposed recently by Kaarnioja et al. (SIAM J Numer Anal 58(2): 1068–1091, 2020). The paper gives a full error analysis, and full details of the construction of lattices needed to ensure a good (but inevitably not optimal) rate of convergence and an error bound independent of dimension. Numerical experiments support the theory.

[1]  Lutz Kämmerer,et al.  Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness , 2015, Numerische Mathematik.

[2]  M. Urner Scattered Data Approximation , 2016 .

[3]  Christoph Schwab,et al.  Quasi-Monte Carlo Integration for Affine-Parametric, Elliptic PDEs: Local Supports and Product Weights , 2018, SIAM J. Numer. Anal..

[4]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[7]  Lutz Kämmerer,et al.  Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling , 2015, J. Complex..

[8]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[9]  R. Gantner Dimension Truncation in QMC for Affine-Parametric Operator Equations , 2016 .

[10]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[11]  Charles A. Micchelli,et al.  A Survey of Optimal Recovery , 1977 .

[12]  Frances Y. Kuo,et al.  Lattice algorithms for multivariate approximation in periodic spaces with general weight parameters , 2019, 75 Years of Mathematics of Computation.

[13]  Frances Y. Kuo,et al.  Function integration, reconstruction and approximation using rank-1 lattices , 2019, Math. Comput..

[14]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[15]  Michael Griebel,et al.  Reproducing Kernel Hilbert Spaces for Parametric Partial Differential Equations , 2017, SIAM/ASA J. Uncertain. Quantification.

[16]  Yoshihito Kazashi,et al.  Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients , 2017, 1701.05974.

[17]  Frances Y. Kuo,et al.  Fast component-by-component construction of lattice algorithms for multivariate approximation with POD and SPOD weights , 2019, Math. Comput..

[18]  Holger Wendland,et al.  Kernel-Based Reconstructions for Parametric PDEs , 2017, Meshfree Methods for Partial Differential Equations IX.

[19]  Christoph Schwab,et al.  QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights , 2018, Numerische Mathematik.

[20]  T. J. Rivlin,et al.  Lectures on optimal recovery , 1985 .

[21]  H. Rauhut,et al.  Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations , 2014, Mathematics of Computation.

[22]  Henryk Wozniakowski,et al.  Lattice rule algorithms for multivariate approximation in the average case setting , 2008, J. Complex..

[23]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[24]  I. Sloan,et al.  Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .

[25]  F. J. Hickernell,et al.  Spline Methods Using Integration Lattices and Digital Nets , 2009 .

[26]  Fred J. Hickernell,et al.  Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .

[27]  Frances Y. Kuo,et al.  Uncertainty Quantification Using Periodic Random Variables , 2020, SIAM J. Numer. Anal..

[28]  Michael Golomb,et al.  OPTIMAL APPROXIMATIONS AND ERROR BOUNDS , 1958 .

[29]  C. D. Boor,et al.  On splines and their minimum properties , 1966 .