Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification
暂无分享,去创建一个
Frances Y. Kuo | Fabio Nobile | Ian H. Sloan | Vesa Kaarnioja | Yoshihito Kazashi | I. Sloan | F. Nobile | F. Kuo | V. Kaarnioja | Yoshihito Kazashi
[1] Lutz Kämmerer,et al. Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness , 2015, Numerische Mathematik.
[2] M. Urner. Scattered Data Approximation , 2016 .
[3] Christoph Schwab,et al. Quasi-Monte Carlo Integration for Affine-Parametric, Elliptic PDEs: Local Supports and Product Weights , 2018, SIAM J. Numer. Anal..
[4] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[5] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[6] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[7] Lutz Kämmerer,et al. Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling , 2015, J. Complex..
[8] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[9] R. Gantner. Dimension Truncation in QMC for Affine-Parametric Operator Equations , 2016 .
[10] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[11] Charles A. Micchelli,et al. A Survey of Optimal Recovery , 1977 .
[12] Frances Y. Kuo,et al. Lattice algorithms for multivariate approximation in periodic spaces with general weight parameters , 2019, 75 Years of Mathematics of Computation.
[13] Frances Y. Kuo,et al. Function integration, reconstruction and approximation using rank-1 lattices , 2019, Math. Comput..
[14] L. Rogers,et al. Diffusions, Markov processes, and martingales , 1979 .
[15] Michael Griebel,et al. Reproducing Kernel Hilbert Spaces for Parametric Partial Differential Equations , 2017, SIAM/ASA J. Uncertain. Quantification.
[16] Yoshihito Kazashi,et al. Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients , 2017, 1701.05974.
[17] Frances Y. Kuo,et al. Fast component-by-component construction of lattice algorithms for multivariate approximation with POD and SPOD weights , 2019, Math. Comput..
[18] Holger Wendland,et al. Kernel-Based Reconstructions for Parametric PDEs , 2017, Meshfree Methods for Partial Differential Equations IX.
[19] Christoph Schwab,et al. QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights , 2018, Numerische Mathematik.
[20] T. J. Rivlin,et al. Lectures on optimal recovery , 1985 .
[21] H. Rauhut,et al. Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations , 2014, Mathematics of Computation.
[22] Henryk Wozniakowski,et al. Lattice rule algorithms for multivariate approximation in the average case setting , 2008, J. Complex..
[23] James A. Nichols,et al. Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.
[24] I. Sloan,et al. Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .
[25] F. J. Hickernell,et al. Spline Methods Using Integration Lattices and Digital Nets , 2009 .
[26] Fred J. Hickernell,et al. Error Analysis of Splines for Periodic Problems Using Lattice Designs , 2006 .
[27] Frances Y. Kuo,et al. Uncertainty Quantification Using Periodic Random Variables , 2020, SIAM J. Numer. Anal..
[28] Michael Golomb,et al. OPTIMAL APPROXIMATIONS AND ERROR BOUNDS , 1958 .
[29] C. D. Boor,et al. On splines and their minimum properties , 1966 .