Numerical modelling of two-phase flow in a geocentrifuge

[1]  M. Celia,et al.  Effects of heterogeneities on capillary pressure-saturation-relative permeability relationships. , 2002, Journal of contaminant hydrology.

[2]  Luc Thorel,et al.  Centrifuge modelling of capillary rise , 2001 .

[3]  M. Celia,et al.  Effective parameters for two-phase flow in a porous medium with periodic heterogeneities. , 2001, Journal of contaminant hydrology.

[4]  M. Barrufet,et al.  Using centrifuge data to investigate the effects of polymer treatment on relative permeability , 2001 .

[5]  P. Culligan,et al.  Centrifuge modeling of air sparging - a study of air flow through saturated porous media. , 2000, Journal of hazardous materials.

[6]  M. Pantazidou,et al.  Centrifuge study of DNAPL transport in granular media , 2000 .

[7]  H. A. Basha,et al.  Estimation of the unsaturated hydraulic conductivity from the pressure distribution in a centrifugal field , 1999 .

[8]  Miguel A. Mariño,et al.  Centrifuge modeling of one-dimensional subsurface contamination , 1998 .

[9]  David Andrew Barry,et al.  Centrifuge modelling of solute transport during partially saturated flow , 1998, Environ. Model. Softw..

[10]  John S. Selker,et al.  Multifluid flow in bedded porous media: laboratory experiments and numerical simulations , 1998 .

[11]  R. J. Mitchell,et al.  The eleventh annual R.M. Hardy Keynote Address, 1997: Centrifugation in geoenvironmental practice and education , 1998 .

[12]  B. A. Baldwin,et al.  A direct method for simultaneously determining positive and negative capillary pressure curves in reservoir rock , 1998 .

[13]  M. Oostrom,et al.  Comparison of relative permeability-saturation-pressure parametric models for infiltration and redistribution of a light nonaqueous-phase liquid in sandy porous media , 1998 .

[14]  J. H. Dane,et al.  Light Nonaqueous‐Phase Liquid Movement in a Variably Saturated Sand , 1997 .

[15]  White,et al.  STOMP. Subsurface Transport Over Multiple Phases , 1997 .

[16]  White,et al.  STOMP Subsurface Transport Over Multiple Phases: User`s guide , 1997 .

[17]  C. Zhigang The effect of gravity degradation on low-speed centrifuge capillary pressure data , 1996 .

[18]  H. H. Vaziri Theory and application of a fully coupled thermo-hydro-mechanical finite element model , 1996 .

[19]  R. J. Mitchell,et al.  Modelling of light nonaqueous phase liquid (LNAPL) releases into unsaturated sand , 1996 .

[20]  D. Ruth,et al.  The effect of gravity degradation on low‐speed centrifuge capillary pressure data , 1995 .

[21]  M. B. Mahmud,et al.  Accelerated physical modelling of radioactive waste migration in soil , 1994 .

[22]  K. Ayappa,et al.  Influence of sample width on deducing capillary pressure curves with the centrifuge , 1994 .

[23]  James F. Pankow,et al.  Dissolution of dense chlorinated solvents into groundwater. 2. Source functions for pools of solvent , 1992 .

[24]  Emil O. Frind,et al.  Two‐phase flow in heterogeneous porous media: 1. Model development , 1991 .

[25]  C. Marlé Multiphase Flow in Porous Media , 1981 .

[26]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[27]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[28]  N. T. Burdine Relative Permeability Calculations From Pore Size Distribution Data , 1953 .