Posterior parietal cortex and the filtering of distractors

Neural systems for visual processing can focus attention on behaviorally relevant objects, filtering out competing distractors. Neurophysiological studies in animals and brain imaging studies in humans suggest that such filtering depends on top-down inputs to extrastriate visual areas, originating in structures important for attentional control. To test whether the posterior parietal cortex may be a necessary source of signals that filter distractors, we measured the ability of a patient with bilateral parietal lesions to discriminate the features of a target surrounded by distractors of variable contrast. In the presence of distractors, the patient was impaired at discriminating both grating orientation and faces, and the magnitude of the impairment increased with distractor salience. These attentional deficits are remarkably similar to those caused by damage to monkey extrastriate regions V4 and/or TEO, which are thought to be recipients of top-down attentional feedback. In contrast to the effects of V4 and TEO lesions, however, the parietal lesions impaired performance even with widely spaced targets and distractors, a finding consistent with the projections of parietal cortex to visual processing areas covering a wide range of receptive field sizes and eccentricities.

[1]  G. B. Wetherill,et al.  SEQUENTIAL ESTIMATION OF POINTS ON A PSYCHOMETRIC FUNCTION. , 1965, The British journal of mathematical and statistical psychology.

[2]  M. Mesulam A cortical network for directed attention and unilateral neglect , 1981, Annals of neurology.

[3]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[4]  M. Posner,et al.  Neural systems control of spatial orienting. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  P. Grobstein Analysis of Visual Behavior, David J. Ingle, Melvyn A. Goodale, Richard J.W. Mansfield (Eds.). MIT press, Cambridge, MA and London (1982), 834 , 1983 .

[6]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[8]  K M Heilman,et al.  Normal tactile threshold in monkeys with neglect , 1986, Neurology.

[9]  M. Jeannerod Neurophysiological and neuropsychological aspects of spatial neglect. , 1987 .

[10]  M. Goldberg Neurophysiological and neuropsychological aspects of spatial neglect Edited by M. Jeannerod, Advances in Pschology, No. 45, North-Holland, Amsterdam, 1987. 346 pp. , 1988, Neuropsychologia.

[11]  Elisabetta Làdavas,et al.  Unilateral attention deficits and hemispheric asymmetries in the control of visual attention , 1989, Neuropsychologia.

[12]  E. Renzi,et al.  Attentional Shift Towards the Rightmost Stimuli in Patients with Left Visual Neglect , 1989, Cortex.

[13]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[14]  J. Lynch,et al.  Deficits of visual attention and saccadic eye movements after lesions of parietooccipital cortex in monkeys. , 1989, Journal of neurophysiology.

[15]  M M Mesulam,et al.  Large‐scale neurocognitive networks and distributed processing for attention, language, and memory , 1990, Annals of neurology.

[16]  Kenneth M Heilman,et al.  Impaired shifting of attention in Balint's syndrome , 1990, Brain and Cognition.

[17]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[18]  M. Goldberg,et al.  Representation of visuomotor space in the parietal lobe of the monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[19]  P. Goldman-Rakic,et al.  Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey , 1991, Neuroscience.

[20]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.

[21]  R T Knight,et al.  Cortical substrates supporting visual search in humans. , 1991, Cerebral cortex.

[22]  M. Corbetta,et al.  Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  M. J. Eacott,et al.  The role of monkey inferior parietal cortex in visual discrimination of identity and orientation of shapes , 1991, Behavioural Brain Research.

[24]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  E. Miller,et al.  Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus , 1993, Brain Research.

[26]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[27]  Marcia Grabowecky,et al.  Preattentive Processes Guide Visual Search: Evidence from Patients with Unilateral Visual Neglect , 1993, Journal of Cognitive Neuroscience.

[28]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[29]  G. Engel,et al.  Neuropsychology , 1994, Schizophrenia Research.

[30]  R. Rafal,et al.  Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. , 1994, Journal of experimental psychology. General.

[31]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[32]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  L. Cosmides From : The Cognitive Neurosciences , 1995 .

[34]  A. Treisman,et al.  Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions , 1995, Science.

[35]  R. Ivry,et al.  Response channel activation and the lateral prefrontal cortex , 1996, Neuropsychologia.

[36]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[37]  G. Orban,et al.  The influence of stimulus location on the brain activation pattern in detection and orientation discrimination. A PET study of visual attention. , 1996, Brain : a journal of neurology.

[38]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[39]  M. Farah,et al.  Behavioral Neurology and Neuropsychology , 1996 .

[40]  P. Fox,et al.  Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs , 1997, Human brain mapping.

[41]  Ronald A. Rensink,et al.  TO SEE OR NOT TO SEE: The Need for Attention to Perceive Changes in Scenes , 1997 .

[42]  G. Mangun,et al.  Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex , 1997, Human brain mapping.

[43]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[44]  A. Treisman,et al.  The Interaction of Spatial and Object Pathways: Evidence from Balint's Syndrome , 1997, Journal of Cognitive Neuroscience.

[45]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[46]  G. Mangun,et al.  ERP and fMRI measures of visual spatial selective attention , 1998, Human brain mapping.

[47]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[48]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[49]  A. Nobre,et al.  Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI , 1998, The Journal of Neuroscience.

[50]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Ivry,et al.  Response Channel Activation and the Temporoparietal Junction , 1998, Brain and Cognition.

[52]  X. Hu,et al.  4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. , 1998, Journal of neurophysiology.

[53]  M. Bentivoglio,et al.  The centenarian Golgi apparatus , 1998, Nature.

[54]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[55]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[56]  F. J. Friedrich,et al.  Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. , 1998, Neuropsychology.

[57]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[58]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[59]  J. Guérit,et al.  Behavioral Neurology and Neuropsychology, T.E. Feinberg, M.J. Farah. McGraw Hill, Berlin (1997), 872 , 1999 .

[60]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[61]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[62]  Stephen M. Rao,et al.  Neural Basis of Endogenous and Exogenous Spatial Orienting: A Functional MRI Study , 1999, Journal of Cognitive Neuroscience.

[63]  Leslie G. Ungerleider,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[64]  P. Maruff,et al.  Attentional modulation of implicit processing of information in spatial neglect. , 1999, Neuroreport.

[65]  Ronald A. Rensink,et al.  Competition for consciousness among visual events: the psychophysics of reentrant visual processes. , 2000, Journal of experimental psychology. General.

[66]  M. Corbetta,et al.  Erratum to “Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines” , 2000, Nature Neuroscience.

[67]  Chris Rorden,et al.  The fate of global information in dorsal simultanagnosia , 2000 .

[68]  G. Recanzone,et al.  Auditory and Visual Spatial Localization Deficits Following Bilateral Parietal Lobe Lesions in a Patient with Balint's Syndrome , 2000, Journal of Cognitive Neuroscience.

[69]  J Currie,et al.  Goal-directed selective attention and response competition monitoring: evidence from unilateral parietal and anterior cingulate lesions. , 2000, Neuropsychology.

[70]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[71]  J. Gore,et al.  Neural Correlates of the Attentional Blink , 2000, Neuron.

[72]  J. Gallant,et al.  A Human Extrastriate Area Functionally Homologous to Macaque V4 , 2000, Neuron.

[73]  J Duncan,et al.  Responses of neurons in macaque area V4 during memory-guided visual search. , 2001, Cerebral cortex.

[74]  G A Orban,et al.  Orientation discrimination of objects and gratings compared: an fMRI study , 2001, The European journal of neuroscience.

[75]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. , 2001, Cerebral cortex.

[76]  G. Mangun,et al.  Dissociating top-down attentional control from selective perception and action , 2001, Neuropsychologia.

[77]  C. Kennard,et al.  Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. , 2001, Brain : a journal of neurology.

[78]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[79]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[80]  Leslie G. Ungerleider,et al.  The neural basis of biased competition in human visual cortex , 2001, Neuropsychologia.

[81]  Lynn C. Robertson,et al.  Implicit Representations of Space after Bilateral Parietal Lobe Damage , 2001, Journal of Cognitive Neuroscience.

[82]  J. Gottlieb Parietal mechanisms of target representation , 2002, Current Opinion in Neurobiology.

[83]  F. J. Friedrich,et al.  Visual perception without awareness in a patient with posterior cortical atrophy: Impaired explicit but not implicit processing of global information , 2002, Journal of the International Neuropsychological Society.

[84]  Manjit,et al.  Neurology , 1912, NeuroImage.

[85]  M. Chun,et al.  The dark side of visual attention , 2002, Current Opinion in Neurobiology.

[86]  A. Mack Inattentional Blindness , 2003 .

[87]  Lynn C. Robertson,et al.  Space, Objects, Minds and Brains , 2003 .

[88]  M. Tovée,et al.  The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the receptive field , 2004, Experimental Brain Research.

[89]  T. Sato,et al.  Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques , 2004, Experimental Brain Research.