3.01 – Composition of the Continental Crust

[1]  Anne S. Meltzer,et al.  Nanga Parbat crustal anisotropy: Implications for interpretation of crustal velocity structure and shear‐wave splitting , 2001 .

[2]  P. H. Nixon,et al.  Lower crustal granulite xenoliths in carbonatite volcanoes of the Western Rift of East Africa , 1987, Mineralogical Magazine.

[3]  W. Davis U-Pb zircon and rutile ages from granulite xenoliths in the Slave province: Evidence for mafic magmatism in the lower crust coincident with Proterozoic dike swarms , 1997 .

[4]  R. Rudnick,et al.  Age diversity of the deep crust in northern Mexico , 1991 .

[5]  K. H. Wedepohl,et al.  Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb , 1980 .

[6]  D. James,et al.  Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution , 2002 .

[7]  S. Taylor,et al.  The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  H. Downes The nature of the lower continental crust of Europe: petrological and geochemical evidence from xenoliths , 1993 .

[9]  K. Mezger,et al.  Origin of Granulite Terranes and the Formation of the Lowermost Continental Crust , 1989, Science.

[10]  A. T. Anderson Parental basalts in subduction zones: Implications for continental evolution , 1982 .

[11]  P. Kempton,et al.  Mafic Granulite Xenoliths in Neogene Alkali Basalts from the Western Pannonian Basin: Insights into the Lower Crust of a Collapsed Orogen , 1997 .

[12]  H. Korhonen,et al.  Crustal structure of the baltic shield based on off-FENNOLORA refraction data , 1986 .

[13]  J. G. Holland,et al.  Major element chemical composition of shields and the continental crust , 1972 .

[14]  F. Ortega-Gutiérrez,et al.  Young high-temperature granulites from the base of the crust in central Mexico , 1989, Nature.

[15]  P. Kempton,et al.  Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia , 2002 .

[16]  D. Mittlefehldt Petrology of high pressure clinopyroxenite series xenoliths, Mount Carmel, Israel , 1986 .

[17]  S. Taylor,et al.  Heat Flow and the Chemical Composition of Continental Crust , 1996, The Journal of Geology.

[18]  N. Rogers,et al.  Proterozoic age and cumulate origin for granulite xenoliths, Lesotho , 1982, Nature.

[19]  P. J. Patchett,et al.  Proterozoic and Phanerozoic basement terranes of Mexico from Nd isotopic studies , 1988 .

[20]  G. Pattenden,et al.  An Estimate of the Chemical Composition of the Canadian Precambrian Shield , 1967 .

[21]  S. O’Reilly,et al.  Thermal state of the lithosphere beneath Central Mongolia: evidence from deep-seated xenoliths from the Shavaryn-Saram volcanic centre in the Tariat depression, Hangai, Mongolia , 1995 .

[22]  R. Keays,et al.  Additional estimates of continental surface Precambrian shield composition in Canada , 1976 .

[23]  N. Pearson,et al.  Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton , 2003 .

[24]  M. Thirlwall,et al.  Lower crustal granulite xenoliths from the Pannonian Basin, Hungary. Part 1: mineral chemistry, thermobarometry and petrology , 2003 .

[25]  J. Ruíz,et al.  Geochemistry of exposed granulite facies terrains and lower crustal xenoliths in Mexico , 1989 .

[26]  J. Juhanoja,et al.  Petrology and geochemistry of mafic granulite xenoliths from the Lahtojoki kimberlite pipe, eastern Finland , 2000 .

[27]  X. Pichon,et al.  Uplift of Tibet: from eclogites to granulites — implications for the Andean Plateau and the Variscan belt , 1997 .

[28]  J. H. Berg,et al.  Lateral Isotopic Discontinuity in the Lower Crust: An Example from Antarctica , 1987, Science.

[29]  R. Carlson,et al.  Lower crustal evolution under central Arizona: Sr, Nd and Pb isotopic and geochemical evidence from the mafic xenoliths of Camp Creek , 1988 .

[30]  W. Griffin,et al.  Combined U-Pb dating and Sm-Nd studies on lower crustal and mantle xenoliths from the Delegate basaltic pipes, southeastern Australia , 1998 .

[31]  B. Upton,et al.  Pyroxenite and granulite xenoliths from beneath the Scottish Northern Highlands Terrane: evidence for lower-crust/upper-mantle relationships , 2001 .

[32]  W. Heinrich,et al.  Composition and SmNd isotopic data of the lower crust beneath San Luis Potosí, central Mexico: Evidence from a granulite-facies xenolith suite , 1994 .

[33]  H. Pollack,et al.  A global analysis of heat flow from Precambrian terrains: Implications for the thermal structure of Archean and Proterozoic lithosphere , 1993 .

[34]  R. Harmon,et al.  Petrology and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, southeastern Arizona , 1990 .

[35]  S. Kay,et al.  The Nature of the Lower Continental Crust: Inferences From Geophysics Surface Geology, and Crustal Xenoliths (Paper 80R1566) , 1981 .

[36]  S. F.L,et al.  Mantle-lower crust petrology from inclusions in basaltic rocks in Eastern Australia — an outline , 1982 .

[37]  S. Taylor,et al.  Large ion lithophile elements in rocks from high-pressure granulite facies terrains , 1985 .

[38]  A. Poldervaart Chemistry of the Earth’s Crust , 1955 .

[39]  I. Ertan,et al.  Fluid inclusions in mantle and lower crustal xenoliths from the Simcoe volcanic field, Washington , 1999 .

[40]  D. Vielzeuf The spinel and quartz associations in high grade xenoliths from Tallante (S.E. Spain) and their potential use in geothermometry and barometry , 1983 .

[41]  R. Arculus,et al.  Geochemical and isotopic characteristics of lower crustal xenoliths, San Francisco Volcanic Field, Arizona, U.S.A , 1995 .

[42]  Barth,et al.  Rutile-bearing refractory eclogites: missing link between continents and depleted mantle , 2000, Science.

[43]  H. Korhonen,et al.  Crust and upper mantle structure along the DSS Baltic profile in SE Finland , 1990 .

[44]  V. Bennett,et al.  Evidence from Xenoliths for a Dynamic Lower Crust, Eastern Mojave Desert, California , 1994 .

[45]  P. Kelemen,et al.  On the conditions for lower crustal convective instability , 2001 .

[46]  L. Nicolaysen,et al.  Radioelement concentrations in the deep profile through Precambrian basement of the Vredefort structure , 1981 .

[47]  W. McDonough,et al.  Thermal structure, thickness and composition of continental lithosphere , 1998 .

[48]  B. Weaver,et al.  Empirical approach to estimating the composition of the continental crust , 1984, Nature.

[49]  E. Sharkov,et al.  Garnet Granulite Xenoliths from the Northern Baltic Shield—the Underplated Lower Crust of a Palaeoproterozoic Large Igneous Province? , 2001 .

[50]  C. Dupuy,et al.  Geochemistry and petrology of meta-igneous granulitic xenoliths in Neogene volcanic rocks of the Massif Central, France — implications for the lower crust , 1980 .

[51]  J. Percival,et al.  Archean crust as revealed in the Kapuskasing uplift, Superior province, Canada , 1983 .

[52]  G. M. Young,et al.  Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations , 1984 .

[53]  J. Dawson,et al.  Isotope geochemistry of xenoliths from East Africa: Implications for development of mantle reservoirs and their interaction , 1984 .

[54]  G. Wörner,et al.  Crustal xenoliths from Cenozoic volcanic fields of West Germany: Implications for structure and composition of the continental crust , 1991 .

[55]  R. Harmon,et al.  Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating , 1992 .

[56]  A. J. White,et al.  The Significance of Primary Scapolite in Granulitic Inclusions from Deep-seated Pipes , 1964 .

[57]  K. H. Wedepohl The Composition of the Continental Crust , 1995 .

[58]  N. Rogers Granulite xenoliths from Lesotho kimberlites and the lower continental crust , 1977, Nature.

[59]  J. Saleeby,et al.  The age and origin of a thick mafic–ultramafic keel from beneath the Sierra Nevada batholith , 1998 .

[60]  J. Viramonte,et al.  Metamorphism, isotopic ages and composition of lower crustal granulite xenoliths from the Cretaceous Salta Rift, Argentina , 1999 .

[61]  C. Hawkesworth,et al.  Sm-Nd isotopic study of garnets and their metamorphic host rocks , 1980, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[62]  A. Hofmann,et al.  Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating , 1990, Nature.

[63]  D. DePaolo,et al.  Thermal history of Colorado Plateau lithosphere from Sm-Nd mineral geochronology of xenoliths , 1996 .

[64]  D. C. Ross Mafic: gneissic complex (batholithic root?) in the southernmost Sierra Nevada, California , 1985 .

[65]  S. Gallet,et al.  Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka , 2001 .

[66]  Thomas A. Bida,et al.  Discovery of calcium in Mercury's atmosphere , 2000, Nature.

[67]  S. Nasir,et al.  Lithospheric petrology beneath the northern part of the Arabian Plate in Syria: evidence from xenoliths in alkali basalts , 2000 .

[68]  S. Hart,et al.  Re–Os isotope evidence for the composition, formation and age of the lower continental crust , 1998, Nature.

[69]  M. Rutter The nature of the lithosphere beneath the Sardinian continental block: Mantle and deep crustal inclusions in mafic alkaline lavas , 1987 .

[70]  W. McDonough,et al.  Tracking the budget of Nb and Ta in the continental crust , 2000 .

[71]  A. J. White,et al.  Granulitic and eclogitic inclusions from basic pipes at Delegate, Australia , 1969 .

[72]  R. Rudnick,et al.  Dating the lower crust by ion microprobe , 1987 .

[73]  M. Sun,et al.  Continental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton , 2002 .

[74]  A. Hofmann,et al.  Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth , 1992 .

[75]  S. Taylor,et al.  Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust , 1980 .

[76]  Shengbiao Hu,et al.  Heat flow in the continental area of China: a new data set , 2000 .

[77]  J. Owen,et al.  Xenoliths in a mafic dyke at Popes Harbour, Nova Scotia: implications for the basement to the Meguma Group , 1988 .

[78]  C. Dupuy,et al.  Petrology and geochemistry of granulite xenoliths from Central Hoggar (Algeria) — Implications for the lower crust , 1982 .

[79]  H. Kern,et al.  Seismic properties and densities of middle and lower crustal rocks exposed along the North China Geoscience Transect , 1996 .

[80]  D. DePaolo,et al.  Nd and Sr isotope chronostratigraphy of Colorado Plateau lithosphere: implications for magmatic and tectonic underplating of the continental crust , 1993 .

[81]  J. Cogley Continental Margins and the Extent and Number of the Continents (Paper 4R0215) , 1984 .

[82]  Z. Garfunkel,et al.  Ultramafic xenoliths from the Mt. Carmel area (Karem Maharal Volcano), Israel , 1986 .

[83]  A. Embey-Isztin,et al.  Mafic granulites and clinopyroxenite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin , 1990, Mineralogical Magazine.

[84]  S. Taylor,et al.  Trace element fractionation trends of tholeiitic magma at moderate pressure: Evidence from an Al-spinel ultramafic-mafic inclusion suite , 1981 .

[85]  P. Vidal,et al.  Étude par la méthode PbPb de roches de haut grade métamorphique impliquées dans la chaîne Hercynienne , 1985 .

[86]  H. Berckhemer Direct evidence for the composition of the lower crust and the moho , 1969 .

[87]  W. Griffin,et al.  Garnet granulite and associated xenoliths in minette and serpentinite diatremes of the Colorado Plateau , 1979 .

[88]  J. Saleeby,et al.  Buoyancy sources for a large unrooted mountain range , 1996 .

[89]  H. Stosch,et al.  Evolution of the lower continental crust: granulite facies xenoliths from the Eifel, West Germany , 1984, Nature.

[90]  B. Weaver,et al.  Lewisian gneiss geochemistry and Archaean crustal development models , 1981 .

[91]  R. Carlson,et al.  Ultramafic rocks at the center of the Vredefort structure: Further evidence for the crust on edge model , 1999 .

[92]  S. Eggins,et al.  Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas , 2003, Nature.

[93]  Yiming Huang,et al.  The evolution of the lithosphere in southern Africa: A perspective on the basic granulite xenoliths from kimberlites in South Africa , 1995 .

[94]  K. L. Cameron,et al.  Xenoliths of Grenvillian granulite basement constrain models for the origin of voluminous Tertiary rhyolites, Davis Mountains, west Texas , 1998 .

[95]  J. Lockwood,et al.  Fragments of the mantle and crust from beneath the Sierra Nevada batholith: Xenoliths in a volcanic pipe near Big Creek, California , 1988 .

[96]  C. Pin,et al.  Nature and Composition of the Lower Continental Crust in Central Spain and the Granulite–Granite Linkage: Inferences from Granulitic Xenoliths , 1999 .

[97]  B. Upton,et al.  The upper mantle and deep crust beneath the British Isles: evidence from inclusions in volcanic rocks , 1983, Journal of the Geological Society.

[98]  S. Nasir The lithosphere beneath the northwestern part of the Arabian plate (Jordan) : evidence from xenoliths and geophysics , 1992 .

[99]  R. Durrheim,et al.  A seismic refraction investigation of the Archaean Kaapvaal Craton, South Africa, using mine tremors as the energy source , 1992 .

[100]  D. James,et al.  Preliminary results on the oxygen isotopic composition of the lower crust, Kilbourne Hole Maar, New Mexico , 1980 .

[101]  J. Valley,et al.  Extraction and carbon isotope analysis of CO2 from scapolite in deep crustal granulites and xenoliths , 1994 .

[102]  B. Yardley Earth science: Is there water in the deep continental crust? , 1986, Nature.

[103]  R. Rudnick Nd and Sr isotopic compositions of lower-crustal xenoliths from north Queensland, Australia: Implications for Nd model ages and crustal growth processes , 1990 .

[104]  S. Bowring,et al.  Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada , 1999 .

[105]  N. Marchildon,et al.  Kyanite-garnet-bearing Cambrian rocks and Grenville granulites from the Ayer's Cliff, Quebec, Canada, lamprophyre dike suite: Deep crustal fragments from the northern Appalachians , 1989 .

[106]  A. Markwick,et al.  The lower crust of SE Belarus: petrological, geophysical and geochemical constraints from xenoliths , 2001 .

[107]  F. Rolfo,et al.  Two contrasting eclogite types in the Himalayas: implications for the Himalayan orogeny. , 2000 .

[108]  S. Wass,et al.  Crustal growth in south‐eastern Australia—evidence from lower crustal eclogitic and granulitic xenoliths , 1983 .

[109]  S. Harley The origins of granulites: a metamorphic perspective , 1989, Geological Magazine.

[110]  K. Condie Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales , 1993 .

[111]  M. Salisbury,et al.  Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution , 1981 .

[112]  D. Kohlstedt,et al.  High‐temperature deformation of dry diabase with application to tectonics on Venus , 1998 .

[113]  W. Griffin,et al.  The crust-mantle boundary beneath cratons and craton margins: a transect across the south-west margin of the Kaapvaal craton , 1995 .

[114]  Tsuyoshi Tanaka,et al.  Petrogenic Implications of Ree and Ba Data on Mafic and Ultramafic Inclusions from Itinome-Gata, Japan , 1981, The Journal of Geology.

[115]  M. Salisbury,et al.  Seismic properties of rock samples from the Pikwitonei granulite belt – God's Lake domain crustal cross section, Manitoba , 1996 .

[116]  Benren Zhang,et al.  Chemical composition of the continental crust as revealed by studies in East China , 1998 .

[117]  R. Ketcham Distribution of heat‐producing elements in the upper and middle crust of southern and west central Arizona: Evidence from the core complexes , 1996 .

[118]  K. Aoki Petrology of mafic inclusions from Itinome-gata, Japan , 1971 .

[119]  James H. Roark,et al.  Ancient lowlands on Mars , 2002 .

[120]  L. Haskin,et al.  Rare earths in sediments , 1966 .

[121]  W. Griffin,et al.  Thermal and petrological structure of the lithosphere beneath Hannuoba , 2001 .

[122]  K. Collerson,et al.  LuHf geochronology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilbourne Hole, New Mexico , 1997 .

[123]  W. Mooney,et al.  Evolution of the Precambrian lithosphere: Seismological and geochemical constraints , 1994 .

[124]  I. Kaneoka,et al.  Sr isotope study of mafic and ultramafic inclusions from Itinome-gata, Japan , 1980 .

[125]  M. Okrusch,et al.  Granulite-facies metabasite ejecta in the Laacher See area, Eifel, West Germany , 1979 .

[126]  W. Griffin,et al.  Geothermal profile and crust-mantle transition beneath east-central Queensland: Volcanology, xenolith petrology and seismic data , 1987 .

[127]  S. Taylor The origin and growth of continents , 1967 .

[128]  E. M. Cameron,et al.  Mass balance during gabbro-amphibolite transition, Bamble Sector, Norway: implications for petrogenesis and tectonic setting of the gabbros , 2002 .

[129]  S. Taylor,et al.  Geochemistry of loess, continental crustal composition and crustal model ages , 1983 .

[130]  G. Zandt,et al.  The nature of orogenic crust in the central Andes , 2002 .

[131]  R. Rudnick Growing from below , 1990, Nature.

[132]  N. Sleep,et al.  Mass balance calculations for two sections of island arc crust and implications for the formation of continents , 1990 .

[133]  H. Stosch,et al.  Granulite facies lower crustal xenoliths from the Eifel, West Germany: petrological and geochemical aspects , 1990 .

[134]  J. Cottin,et al.  Oceanic mafic granulite xenoliths from the Kerguelen archipelago , 1994, Nature.

[135]  Shenghong Hu,et al.  Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition , 2001 .

[136]  S. McLennan Crustal heat production and the thermal evolution of Mars , 2001 .

[137]  K. Heier A Discussion on the evolution of the Precambrian crust - Geochemistry of granulite facies rocks and problems of their origin , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[138]  M. Warner,et al.  Seismic velocity, heterogeneity, and the composition of the lower crust , 1996 .

[139]  David E. James,et al.  Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons , 2001 .

[140]  P. Kelemen,et al.  Relationship between seismic P‐wave velocity and the composition of anhydrous igneous and meta‐igneous rocks , 2003 .

[141]  L. Ratschbacher,et al.  Hot and dry deep crustal xenoliths from tibet , 2000, Science.

[142]  R. Rudnick Making continental crust , 1995, Nature.

[143]  A. Dia,et al.  Loess geochemistry and its implications for particle origin and composition of the upper continental crust , 1998 .

[144]  R. Kistler,et al.  Nd and Sr isotopic study of crustal and mantle inclusions from the Sierra Nevada and implications for batholith petrogenesis , 1983 .

[145]  D. Mittlefehldt Genesis of clinopyroxene-amphibole xenoliths from Birket Ram: trace element and petrologic constraints , 1984 .

[146]  W. S. Baldridge Mafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphere , 1979 .

[147]  P. Kelemen,et al.  Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup , 1993, Nature.

[148]  G. R. Keller,et al.  Deep Probe: imaging the roots of western North America , 2002 .

[149]  T. Hansteen,et al.  Pleistocene Underplating and Metasomatism of the Lower Continental Crust: a Xenolith Study , 2000 .

[150]  W. Griffin,et al.  Is the continental Moho the crust-mantle boundary? , 1987 .

[151]  B. Upton,et al.  U–Pb isotopic ages from a granulite-facies xenolith from Partan Craig in the Midland Valley of Scotland , 1984, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[152]  Raymond E. Arvidson,et al.  Impact craters and Venus resurfacing history , 1992 .

[153]  K. Furlong,et al.  Heat production and thermal conductivity of rocks from the Pikwitonei–Sachigo continental cross section, central Manitoba: implications for the thermal structure of Archean crust , 1987 .

[154]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[155]  A. K. Chatterjee,et al.  Chemical and isotopic composition of the lower crust beneath the Meguma Lithotectonic Zone, Nova Scotia: evidence from granulite facies xenoliths , 1991 .

[156]  C. Dupuy,et al.  Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower-crustal granulitic xenoliths (French Massif Central) , 1990 .

[157]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[158]  S. Nasir Mafic lower crustal xenoliths from the northwestern part of the Arabian Plate , 1995 .

[159]  H. Kern,et al.  Measured and calculated seismic velocities and densities for granulites from xenolith occurrences and adjacent exposed lower crustal sections: A comparative study from the North China craton , 2000 .

[160]  Scott M. McLennan,et al.  Relationships between the trace element composition of sedimentary rocks and upper continental crust , 2001 .

[161]  Y. Hattori,et al.  Re-os isotope systematics of the Taklimakan Desert sands, moraines and river sediments around the Taklimakan Desert, and of Tibetan soils , 2003 .

[162]  G. Schaber,et al.  Impact Craters on Venus: What are they Telling Us? , 1991 .

[163]  R. Arculus,et al.  Nd-Sr isotope composition of lower crustal xenoliths — Evidence for the origin of mid-tertiary felsic volcanics in Mexico , 1988 .

[164]  M. Parada,et al.  Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone: implications for crustal composition and magma-crust interaction , 1995 .

[165]  J. Dawson Sub-cratonic crust and upper mantle models based on xenolith suites in kimberlite and nephelinitic diatremes , 1977, Journal of the Geological Society.

[166]  B. Upton,et al.  Lower crustal and possible shallow mantle samples from beneath the Hebrides: evidence from a xenolithic dyke at Gribun, western Mull , 1998, Journal of the Geological Society.

[167]  R. Kay,et al.  Creation and destruction of lower continental crust , 1991 .

[168]  E. Sharkov,et al.  Proterozoic zircon ages from lower crustal granulite xenoliths, Kola Peninsula, Russia: evidence for crustal growth and reworking , 2002, Journal of the Geological Society.

[169]  R. Rudnick,et al.  The composition and petrogenesis of the lower crust: A xenolith study , 1987 .

[170]  A. Markwick,et al.  Lower crustal granulite xenoliths from the Arkhangelsk kimberlite pipes: petrological, geochemical and geophysical results , 2000 .

[171]  D. Fountain The Ivrea—Verbano and Strona-Ceneri Zones, Northern Italy: A cross-section of the continental crust—New evidence from seismic velocities of rock samples , 1976 .

[172]  B. Kennett,et al.  The crustal thickness of Australia , 2000 .

[173]  D. Miller,et al.  Seismic signature and geochemistry of an island arc: A multidisciplinary study of the Kohistan accreted terrane, northern Pakistan , 1994 .

[174]  B. Weaver,et al.  Continental crust composition and nature of the lower crust: constraints from mantle Nd–Sr isotope correlation , 1980, Nature.

[175]  E. Flueh,et al.  The crustal structure along the POLAR Profile from seismic refraction investigations , 1989 .

[176]  S. Bowring,et al.  The significance of U–Pb zircon dates in lower crustal xenoliths from the southwestern margin of the Kaapvaal craton, southern Africa , 2001 .

[177]  K. Condie,et al.  The Crust of the Colorado Plateau: New Views of an Old Arc , 1999, The Journal of Geology.

[178]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[179]  Robert G. Strom,et al.  The global resurfacing of Venus , 1993 .

[180]  W. R. Schmus,et al.  Geochemistry, Nd and Sr isotopes, and U/Pb zircon ages of granitoid and metasedimentary xenoliths from the Navajo Volcanic Field, four corners area, southwestern United States , 1999 .

[181]  R. Carlson,et al.  ReOs and UPb geochronological constraints on the eclogite–tonalite connection in the Archean Man Shield, West Africa , 2002 .

[182]  J. H. Berg,et al.  A petrologic geotherm from a continental rift in Antarctica , 1989 .

[183]  J. Hall,et al.  Constraints on crustal hydration below the Colorado plateau from Vp measurements on crustal xenoliths , 1982 .

[184]  W. McDonough,et al.  The composition of the Earth , 1995 .

[185]  C. Jaupart,et al.  The heat flow through oceanic and continental crust and the heat loss of the Earth , 1980 .

[186]  C. Jaupart,et al.  The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: Geothermal implications , 1987 .

[187]  S. Bowring,et al.  Ultrahigh-temperature metamorphism in the lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal Craton, southern Africa , 2003 .

[188]  M. Drummond,et al.  A model for Trondhjemite‐Tonalite‐Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons , 1990 .

[189]  S. Capedri,et al.  Rare earth elements in high-grade metamorphic rocks from the western Alps , 1979 .

[190]  J. Dawson,et al.  Equilibration and reaction in Archaean quartz‐sapphirine granulite xenoliths from the Lace kimberlite pipe, South Africa , 1997 .

[191]  D. Moser,et al.  Proterozoic zircon growth in Archean lower crustal xenoliths, southern Superior craton – a consequence of Matachewan ocean opening , 1997 .

[192]  J. Wilkinson,et al.  An Al-spinel ultramafic-mafic inclusion suite and high pressure megacrysts in an analcimite and their bearing on basaltic magma fractionation at elevated pressures , 1975 .

[193]  O. Vaselli,et al.  Petrology and geochemistry of xenoliths in lamprophyres from the Deccan Traps; implications for the nature of the deep crust boundary in western India , 1999 .

[194]  C. Dupuy,et al.  Catazonal xenoliths in French Neogene volcanic rocks: Constitution of the lower crust , 1974 .

[195]  A. Stolz Fluid activity in the lower crust and upper mantle: mineralogical evidence bearing on the origin of amphibole and scapolite in ultramafic and mafic granulite xenoliths , 1987, Mineralogical Magazine.

[196]  J. Ferguson,et al.  Isotopic and geochemical studies of nodules in kimberlite have implications for the lower continental crust , 1982, Nature.

[197]  G. A. Wandless,et al.  Contribution of metapelitic sediments to the composition, heat production, and seismic velocity of the lower crust of southern New Mexico, U.S.A. , 1989 .

[198]  M. Leech Arrested orogenic development: eclogitization, delamination, and tectonic collapse , 2001 .

[199]  H. Schwarcz,et al.  Crustal geochemistry in the Wawa-Foleyet region, Ontario , 1994 .

[200]  R. Clayton,et al.  Origin of High Mountains in the Continents: The Southern Sierra Nevada , 1996, Science.

[201]  H. Newsom,et al.  The depletion of tungsten in the bulk silicate earth: Constraints on core formation , 1996 .

[202]  B. Drummond A review of crust/upper mantle structure in the Precambrian areas of Australia and implications for Precambrian crustal evolution , 1988 .

[203]  H. Kern,et al.  How mafic is the lower continental crust , 1998 .

[204]  S. Bowring,et al.  Constraints on the thermal evolution of continental lithosphere from U-Pb accessory mineral thermochronometry of lower crustal xenoliths, southern Africa , 2003 .

[205]  P. Toft,et al.  Crustal evolution and the granulite to eclogite transition in xenoliths from kimberlites in the West African Craton , 1989 .

[206]  V. Sisson,et al.  Boron geochemistry of the lower crust: Evidence from granulite terranes and deep crustal xenoliths , 1992 .

[207]  S. Smithson Modeling continental crust: Structural and chemical constraints , 1978 .

[208]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[209]  S. Weaver,et al.  Mafic and ultramafic mantle and deep crustal xenoliths from Banks Peninsula, South Island, New Zealand , 1993 .

[210]  S. Goldstein,et al.  The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb , 1990 .

[211]  D. Moser,et al.  Birth of the Kaapvaal tectosphere 3.08 billion years ago. , 2001, Science.

[212]  P. Mattie,et al.  Origin of the continental crust in the Colorado Plateau: Geochemical evidence from mafic xenoliths from the Navajo Volcanic Field, southwestern USA , 1997 .

[213]  A. Jones,et al.  Metamorphism, Partial Melting, and K-Metasomatism of Garnet-Scapolite-Kyanite Granulite Xenoliths from Lashaine, Tanzania , 1983, The Journal of Geology.

[214]  K. Mengel Crustal xenoliths from Tertiary volcanics of the Northern Hessian Depression , 1990 .

[215]  J. Cottin,et al.  The meta-igneous granulite xenoliths from Kerguelen Archipelago: evidence of a continent nucleation in an oceanic setting , 1998 .

[216]  D. Ionov,et al.  Petrology and geochemistry of xenoliths from the Northern Baltic shield: evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrane , 1995 .

[217]  J. Urrutia‐Fucugauchi,et al.  Lower-Crustal Xenoliths from the Valle de Santiago Maar Field, Michoacan-Guanajuato Volcanic Field, Central Mexico , 1999 .

[218]  A. Streckeisen,et al.  The IUGS systematics of igneous rocks , 1991, Journal of the Geological Society.

[219]  M. Ducea The California arc: Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups , 2001 .

[220]  G. J. Nimz,et al.  Contrasting styles of Pre‐Cenozoic and Mid‐Tertiary crustal evolution in northern Mexico: Evidence from deep crustal xenoliths from La olivina , 1992 .

[221]  R. Grapes Melting and Thermal Reconstitution of Pelitic Xenoliths, Wehr Volcano, East Eifel, West Germany , 1986 .

[222]  M. Menzies,et al.  Strontium, neodymium and lead isotopic compositions of deep crustal xenoliths from the Snake River Plain: evidence for Archean basement , 1985 .

[223]  R. Kistler,et al.  Lower Crustal Xenoliths, Chinese Peak Lava Flow, Central Sierra Nevada , 1986 .

[224]  M. Warner,et al.  Wide-angle seismic velocities in heterogeneous crust , 1997 .

[225]  W. Griffin,et al.  Dating lower crust and upper mantle events: an ion microprobe study of xenoliths from kimberlitic pipes, South Australia , 1994 .

[226]  M. Andreoli,et al.  Geochemistry across an exposed section of Archaean crust at Vredefort, South Africa: with implications for mid-crustal discontinuities☆ , 1990 .

[227]  B. Upton,et al.  Meta-igneous granulite and ultramafic xenoliths from basalts of the Midland Valley of Scotland: petrology and mineralogy of the lower crust and upper mantle , 1984, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[228]  J. V. Smith,et al.  Reduced sapphirine granulite xenoliths from the Lace Kimberlite, South Africa; implications for the deep structure of the Kaapvaal Craton , 1987 .

[229]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[230]  A. Mayer,et al.  Emplacement of mantle peridotite in the lower continental crust, Ivrea-Verbano zone, northwest Italy , 1995 .

[231]  S. Taylor,et al.  Abundance of chemical elements in the continental crust: A new table: Geochimica e t Cosmochimica Ac , 1964 .

[232]  J. Lovering,et al.  High pressure basic inclusions from the Kayrunnera kimberlitic diatreme in New South Wales, Australia , 1979 .

[233]  M. Salisbury,et al.  Seismic structure of the continental crust based on rock velocity measurements from the Kapuskasing Uplift , 1990 .

[234]  R. Smith,et al.  Generation of voluminous silicic magmas and formation of mid-Cenozoic crust beneath north-central Mexico: evidence from ignimbrites, associated lavas, deep crustal granulites, and mantle pyroxenites , 1996 .

[235]  R. Harmon,et al.  Pb and O isotope systematics in granulite facies xenoliths, French Massif Central: implications for crustal processes , 1991 .

[236]  A. Mayer,et al.  New Sm–Nd ages for the Ivrea–Verbano Zone, Sesia and Sessera valleys (Northern-Italy) , 2000 .

[237]  A. Stolz,et al.  Metasomatised lower crustal and upper mantle xenoliths from north Queensland: Chemical and isotopic evidence bearing on the composition and source of the fluid phase , 1989 .

[238]  D. R. Cousens,et al.  Conditions of diamond growth: a proton microprobe study of inclusions in West Australian diamonds , 1988 .

[239]  S. Taylor,et al.  Lower crustal xenoliths from Queensland, Australia: Evidence for deep crustal assimilation and fractionation of continental basalts , 1986 .

[240]  J. Head,et al.  Stratigraphic and geographic distribution of steep‐sided domes on Venus: Preliminary results from regional geological mapping and implications for their origin , 1999 .

[241]  S. Galer,et al.  Lower crustal xenoliths from Mongolia and their bearing on the nature of the deep crust beneath central Asia , 1995 .

[242]  I. Campbell,et al.  No water, no granites - No oceans, no continents , 1983 .

[243]  B. Peucker‐Ehrenbrink,et al.  Rhenium‐osmium isotope systematics and platinum group element concentrations: Loess and the upper continental crust , 2001 .

[244]  D. Fountain,et al.  Seismic properties of rocks from an exposure of extended continental crust—new laboratory measurements from the Ivrea Zone , 1990 .

[245]  M. Thirlwall,et al.  Lower crustal granulite xenoliths from the Pannonian Basin, Hungary, Part 2: Sr–Nd–Pb–Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust , 2003 .

[246]  P. Kelemen Genesis of high Mg# andesites and the continental crust , 1995 .

[247]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[248]  K. Turekian,et al.  The osmium isotopic composition of the continental crust , 1993 .