SHORTED OPERATORS. II

For a positive operator A acting on a Hilbert space, the shorted operator $\mathcal{L}( A )$ is defined to be the supremum of all positive operators which are smaller than A and which have range lying in a fixed subspace S. This maximization problem arises naturally in electrical network theory. In this paper we prove that the shorted operator exists, and develop various properties, including a relation to parallel addition [Anderson and Duffin, J. Math. Anal. Appl., 11 (1969), pp. 576–594]. The basic properties of the shorted operator were developed for finite-dimensional spaces by Anderson [this Journal, 20 (1971), pp. 520–525] ; some of these theorems remain true in all Hilbert spaces, but the proofs are different.