The string of diamonds is nearly tight for rumour spreading

For a rumour spreading protocol, the spread time is defined as the first time that everyone learns the rumour. We compare the synchronous pushp and we show each such pair $\alpha,\beta$ is achievable.

[1]  J. Hammersley,et al.  First-Passage Percolation, Subadditive Processes, Stochastic Networks, and Generalized Renewal Theory , 1965 .

[2]  Nicholas C. Wormald,et al.  On the Push&Pull Protocol for Rumor Spreading , 2017, SIAM J. Discret. Math..

[3]  Scott Shenker,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[4]  Mahmoud Fouz,et al.  Experimental Analysis of Rumor Spreading in Social Networks , 2012, MedAlg.

[5]  Eli Upfal,et al.  Randomized Broadcast in Networks , 1990, Random Struct. Algorithms.

[6]  Rick Durrett,et al.  STOCHASTIC GROWTH MODELS: RECENT RESULTS AND OPEN PROBLEMS , 1989 .

[7]  Jack Hanson,et al.  50 years of first passage percolation , 2015, 1511.03262.

[8]  George Giakkoupis,et al.  How Asynchrony Affects Rumor Spreading Time , 2016, PODC.

[9]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[10]  D. Richardson Random growth in a tessellation , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Richard M. Karp,et al.  Randomized rumor spreading , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.