k-Abelian Pattern Matching: Revisited, Corrected, and Extended
暂无分享,去创建一个
[1] Juhani Karhumäki,et al. Regularity of k-Abelian Equivalence Classes of Fixed Cardinality , 2018, Adventures Between Lower Bounds and Higher Altitudes.
[2] Juhani Karhumäki,et al. On a generalization of Abelian equivalence and complexity of infinite words , 2013, J. Comb. Theory, Ser. A.
[3] Esko Ukkonen,et al. On-line construction of suffix trees , 1995, Algorithmica.
[4] Ely Porat,et al. On the relationship between histogram indexing and block-mass indexing , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] Michael A. Bender,et al. The Level Ancestor Problem Simplified , 2002, LATIN.
[6] Rasmus Pagh,et al. Cuckoo Hashing , 2001, Encyclopedia of Algorithms.
[7] Dong Kyue Kim,et al. Constructing suffix arrays in linear time , 2005, J. Discrete Algorithms.
[8] Peter Sanders,et al. Linear work suffix array construction , 2006, JACM.
[9] Sen Zhang,et al. Two Efficient Algorithms for Linear Time Suffix Array Construction , 2011, IEEE Transactions on Computers.
[10] Dan E. Willard,et al. Log-logarithmic worst-case range queries are possible in space ⊕(N) , 1983 .
[11] Srinivas Aluru,et al. Space efficient linear time construction of suffix arrays , 2003, J. Discrete Algorithms.
[12] Moshe Lewenstein,et al. Weighted Ancestors in Suffix Trees , 2014, ESA.
[13] S. Muthukrishnan,et al. On the sorting-complexity of suffix tree construction , 2000, JACM.
[14] Florin Manea,et al. k-Abelian pattern matching , 2014, J. Discrete Algorithms.
[15] Juhani Karhumäki,et al. Fine and Wilf's Theorem for k-Abelian Periods , 2012, Int. J. Found. Comput. Sci..
[16] Mohammad Sohel Rahman,et al. Indexing permutations for binary strings , 2010, Inf. Process. Lett..
[17] Gad M. Landau,et al. Binary Jumbled Pattern Matching via All-Pairs Shortest Paths , 2014, ArXiv.
[18] Faith Ellen,et al. Optimal Bounds for the Predecessor Problem and Related Problems , 2002, J. Comput. Syst. Sci..
[19] Zsuzsanna Lipták,et al. Searching for Jumbled Patterns in Strings , 2009, Stringology.
[20] Uwe Baier. Linear-time Suffix Sorting - A New Approach for Suffix Array Construction , 2016, CPM.
[21] Mohammad Sohel Rahman,et al. Sub-quadratic time and linear space data structures for permutation matching in binary strings , 2012, J. Discrete Algorithms.
[22] Zsuzsanna Lipták,et al. Algorithms for Jumbled Pattern Matching in Strings , 2011, Int. J. Found. Comput. Sci..
[23] Juhani Karhumäki,et al. On the Unavoidability of k-Abelian Squares in Pure Morphic Words , 2013 .
[24] Moshe Lewenstein,et al. Clustered Integer 3SUM via Additive Combinatorics , 2015, STOC.
[25] Moshe Lewenstein,et al. Dynamic weighted ancestors , 2007, SODA '07.
[26] Gad M. Landau,et al. Scaled and permuted string matching , 2004, Inf. Process. Lett..
[27] Hideo Bannai,et al. Computing Abelian String Regularities Based on RLE , 2017, IWOCA.
[28] Moshe Lewenstein,et al. On Hardness of Jumbled Indexing , 2014, ICALP.
[29] Wojciech Rytter,et al. Efficient Indexes for Jumbled Pattern Matching with Constant-Sized Alphabet , 2013, ESA.
[30] A. B. Cook. Some unsolved problems. , 1952, Hospital management.
[31] Michael A. Bender,et al. The LCA Problem Revisited , 2000, LATIN.
[32] Juhani Karhumäki,et al. Local Squares, Periodicity and Finite Automata , 2011, Rainbow of Computer Science.
[33] Peter van Emde Boas,et al. Design and implementation of an efficient priority queue , 1976, Mathematical systems theory.
[34] Aleksi Saarela,et al. Strongly k-Abelian Repetitions , 2013, WORDS.
[35] Juhani Karhumäki,et al. On cardinalities of k-abelian equivalence classes , 2016, Theor. Comput. Sci..