The genetic basis of familial hypercholesterolemia : inheritance , linkage , and mutations

isabel De Castro-Orós1 Miguel Pocoví2 Fernando Civeira1 1Lipid Unit and Laboratorio de investigación Molecular, Hospital Universitario Miguel Servet, instituto Aragonés de Ciencias de la Salud (i+CS), Zaragoza, Spain; 2Departamento. Bioquímica y Biología Molecular y Celular. Universidad de Zaragoza, instituto Aragonés de Ciencias de la Salud (i+CS), Zaragoza, Spain and Ciber de enfermedades Raras (CiBeReR), instituto de Salud Carlos iii, Spain

[1]  E. Ros,et al.  Impact of low-density lipoprotein receptor mutational class on carotid atherosclerosis in patients with familial hypercholesterolemia. , 2010, Atherosclerosis.

[2]  T. Sawamura New Idol for cholesterol reduction? , 2009, Clinical chemistry.

[3]  M. Brown,et al.  Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. , 2009, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Müller Xanthomata, Hypercholesterolemia, Angina Pectoris. , 2009 .

[5]  E. Ros,et al.  Frequency of low-density lipoprotein receptor gene mutations in patients with a clinical diagnosis of familial combined hyperlipidemia in a clinical setting. , 2008, Journal of the American College of Cardiology.

[6]  Emilio Ros,et al.  Comparison of genetic versus clinical diagnosis in familial hypercholesterolemia. , 2008, The American journal of cardiology.

[7]  Jonathan C. Cohen,et al.  Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor , 2008, Proceedings of the National Academy of Sciences.

[8]  A. Velázquez‐Campoy,et al.  Mechanism of Low Density Lipoprotein (LDL) Release in the Endosome , 2008, Journal of Biological Chemistry.

[9]  R. Cummings,et al.  Functional analysis of sites within PCSK9 responsible for hypercholesterolemias⃞s⃞ The online version of this article (available at http://www.jlr.org) contains supplementary data in the form of one figure. Published, JLR Papers in Press, March 19, 2008. , 2008, Journal of Lipid Research.

[10]  G. Thompson Recommendations for the use of LDL apheresis. , 2008, Atherosclerosis.

[11]  S. Humphries,et al.  A functional mutation in the LDLR promoter (−139C>G) in a patient with familial hypercholesterolemia , 2007, European Journal of Human Genetics.

[12]  Jonathan C. Cohen,et al.  Binding of Proprotein Convertase Subtilisin/Kexin Type 9 to Epidermal Growth Factor-like Repeat A of Low Density Lipoprotein Receptor Decreases Receptor Recycling and Increases Degradation* , 2007, Journal of Biological Chemistry.

[13]  Xiayang Qiu,et al.  Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia , 2007, Nature Structural &Molecular Biology.

[14]  M. Pocovi,et al.  Comparison of DNA array platform vs DNA sequencing as genetic diagnosis tools for familial hypercholesterolemia. , 2006, Clinical Chemistry.

[15]  B. Gordon,et al.  LDL Apheresis: an effective and safe treatment for refractory hypercholesterolemia. , 2006, Cardiovascular drug reviews.

[16]  T. Ranheim,et al.  Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. , 2006, Human molecular genetics.

[17]  Jonathan C. Cohen,et al.  Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. , 2006, The New England journal of medicine.

[18]  J. Kastelein,et al.  Update of the molecular basis of familial hypercholesterolemia in The Netherlands , 2005, Human mutation.

[19]  I. Young,et al.  Genetic screening protocol for familial hypercholesterolemia which includes splicing defects gives an improved mutation detection rate. , 2005, Atherosclerosis.

[20]  E. Ros,et al.  The Use of Achilles Tendon Sonography to Distinguish Familial Hypercholesterolemia from Other Genetic Dyslipidemias , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[21]  M. Pocovi,et al.  Reliable low-density DNA array based on allele-specific probes for detection of 118 mutations causing familial hypercholesterolemia. , 2005, Clinical chemistry.

[22]  E. Fisher,et al.  Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Alexander Pertsemlidis,et al.  Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 , 2005, Nature Genetics.

[24]  O. Faergeman,et al.  No genetic linkage or molecular evidence for involvement of the PCSK9, ARH or CYP7A1 genes in the Familial Hypercholesterolemia phenotype in a sample of Danish families without pathogenic mutations in the LDL receptor and apoB genes. , 2004, Atherosclerosis.

[25]  E. Sijbrands,et al.  Familial defective apolipoprotein B versus familial hypercholesterolemia: an assessment of risk. , 2004, Seminars in vascular medicine.

[26]  M. Pocovi,et al.  Molecular characterization of familial hypercholesterolemia in Spain: Identification of 39 novel and 77 recurrent mutations in LDLR , 2004, Human mutation.

[27]  H. Francová,et al.  New promoter mutations in the low-density lipoprotein receptor gene which induce familial hypercholesterolaemia phenotype: Molecular and functional analysis , 2004, Journal of Inherited Metabolic Disease.

[28]  W. Maerz,et al.  A new but frequent mutation of apoB-100-apoB His3543Tyr. , 2004, Atherosclerosis.

[29]  F. Civeira,et al.  Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia. , 2004, Atherosclerosis.

[30]  S. Blacklow,et al.  A two-module region of the low-density lipoprotein receptor sufficient for formation of complexes with apolipoprotein E ligands. , 2004, Biochemistry.

[31]  Jonathan D. Cohen,et al.  Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. , 2003, The Journal of clinical investigation.

[32]  J. Weissenbach,et al.  Mutations in PCSK9 cause autosomal dominant hypercholesterolemia , 2003, Nature Genetics.

[33]  C. Baigent,et al.  Study of Heart and Renal Protection (SHARP). , 2003, Kidney international. Supplement.

[34]  P. Toutouzas,et al.  Molecular characterization of familial hypercholesterolemia in German and Greek patients , 2003 .

[35]  M. Matsuzaki,et al.  Intravascular ultrasound evaluation of coronary plaque regression by low density lipoprotein-apheresis in familial hypercholesterolemia: the Low Density Lipoprotein-Apheresis Coronary Morphology and Reserve Trial (LACMART). , 2002, Journal of the American College of Cardiology.

[36]  H. Schuster High risk/high priority: familial hypercholesterolemia--a paradigm for molecular medicine. , 2002, Atherosclerosis. Supplements.

[37]  I. Salti,et al.  Management of dyslipidemia. , 2001, Le Journal medical libanais. The Lebanese medical journal.

[38]  F. van Leuven,et al.  The use of Achilles tendon ultrasonography for the diagnosis of familial hypercholesterolemia. , 2001, Atherosclerosis.

[39]  L. Badimón,et al.  Sustained long-term improvement of arterial endothelial function in heterozygous familial hypercholesterolemia patients treated with simvastatin. , 2001, Atherosclerosis.

[40]  Hyesung Jeon,et al.  Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair , 2001, Nature Structural Biology.

[41]  M. Trip,et al.  Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolemia (ASAP): a prospective, randomised, double-blind trial , 2001, The Lancet.

[42]  A. Marais,et al.  Mutation -59c-->t in repeat 2 of the LDL receptor promoter: reduction in transcriptional activity and possible allelic interaction in a South African family with familial hypercholesterolaemia. , 1999, Human molecular genetics.

[43]  T. Nishide,et al.  Effects of intensive lipid lowering by low-density lipoprotein apheresis on regression of coronary atherosclerosis in patients with familial hypercholesterolemia: Japan Low-density Lipoprotein Apheresis Coronary Atherosclerosis Prospective Study (L-CAPS). , 1999, Atherosclerosis.

[44]  C. Junien,et al.  A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. , 1999, American journal of human genetics.

[45]  P. Toutouzas,et al.  Effects of pravastatin on thoracic aortic atherosclerosis in patients with heterozygous familial hypercholesterolemia. , 1998, The American journal of cardiology.

[46]  J. Goldstein,et al.  LDL-receptor structure: Calcium cages, acid baths and recycling receptors , 1997, Nature.

[47]  W. März,et al.  Homozygous familial defective apolipoprotein B-100. Enhanced removal of apolipoprotein E-containing VLDLs and decreased production of LDLs. , 1997, Arteriosclerosis, thrombosis, and vascular biology.

[48]  G. Uijen,et al.  Low density lipoprotein apheresis improves regional myocardial perfusion in patients with hypercholesterolemia and extensive coronary artery disease. LDL-Apheresis Atherosclerosis Regression Study (LAARS). , 1996, Journal of the American College of Cardiology.

[49]  F. Luft,et al.  Oligonucleotide ligation assay (OLA) for the diagnosis of familial hypercholesterolemia , 1996, Nature Biotechnology.

[50]  J. Reiber,et al.  LDL-Apheresis Atherosclerosis Regression Study (LAARS). Effect of aggressive versus conventional lipid lowering treatment on coronary atherosclerosis. , 1996, Circulation.

[51]  A. Soutar,et al.  A mutation (T-45C) in the promoter region of the low-density-lipoprotein (LDL)-receptor gene is associated with a mild clinical phenotype in a patient with heterozygous familial hypercholesterolaemia (FH). , 1995, Human molecular genetics.

[52]  K. Vass,et al.  Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia. , 1995, Arteriosclerosis, thrombosis, and vascular biology.

[53]  R. Prescott,et al.  Familial Hypercholesterolaemia Regression Study: a randomised trial of low-density-lipoprotein apheresis , 1995, The Lancet.

[54]  Weiqun,et al.  Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. , 1995, The Journal of clinical investigation.

[55]  V. Gudnason,et al.  Effect on plasma lipid levels of different classes of mutations in the low-density lipoprotein receptor gene in patients with familial hypercholesterolemia. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.

[56]  O. Jänne,et al.  A single-base substitution in the proximal Sp1 site of the human low density lipoprotein receptor promoter as a cause of heterozygous familial hypercholesterolemia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[57]  P. Kovanen,et al.  Deletion of exon 15 of the LDL receptor gene is associated with a mild form of familial hypercholesterolemia. FH-Espoo. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[58]  G. Coetzee,et al.  Phenotypic variation among familial hypercholesterolemics heterozygous for either one of two Afrikaner founder LDL receptor mutations. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[59]  M. Leppert,et al.  Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. , 1993, The American journal of cardiology.

[60]  Y. Friedlander,et al.  Genetic Determinants of Responsiveness to the HMG‐CoA Reductase Inhibitor Fluvastatin in Patients With Molecularly Defined Heterozygous Familial Hypercholesterolemia , 1993, Circulation.

[61]  M. Taskinen,et al.  Prevalence of familial hypercholesterolemia among young north Karelian patients with coronary heart disease: a study based on diagnosis by polymerase chain reaction. , 1993, Journal of Lipid Research.

[62]  W. D. de Villiers,et al.  Influence of specific mutations at the LDL-receptor gene locus on the response to simvastatin therapy in Afrikaner patients with heterozygous familial hypercholesterolaemia. , 1993, Atherosclerosis.

[63]  T. Nishide,et al.  Regression of coronary atherosclerosis by combined LDL-apheresis and lipid-lowering drug therapy in patients with familial hypercholesterolemia: a multicenter study. The LARS Investigators. , 1992, Atherosclerosis.

[64]  K Kontula,et al.  The familial hypercholesterolemia (FH)-North Karelia mutation of the low density lipoprotein receptor gene deletes seven nucleotides of exon 6 and is a common cause of FH in Finland. , 1992, The Journal of clinical investigation.

[65]  V. Gudnason,et al.  Characterization of deletions in the LDL receptor gene in patients with familial hypercholesterolemia in the United Kingdom. , 1992, Arteriosclerosis and thrombosis : a journal of vascular biology.

[66]  R. Hammer,et al.  Cytoplasmic sequence required for basolateral targeting of LDL receptor in livers of transgenic mice , 1992, The Journal of cell biology.

[67]  G. Coetzee,et al.  A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect. , 1992, American journal of human genetics.

[68]  G. Coetzee,et al.  A common Lithuanian mutation causing familial hypercholesterolemia in Ashkenazi Jews. , 1991, American journal of human genetics.

[69]  M. Kotze,et al.  The molecular basis and diagnosis of familial hypercholesterolaemia in South African Afrikaners , 1991, Annals of human genetics.

[70]  R. Havel,et al.  Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. , 1990, JAMA.

[71]  H. Hobbs,et al.  The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. , 1990, Annual review of genetics.

[72]  H. Hobbs,et al.  Common low-density lipoprotein receptor mutations in the French Canadian population. , 1990, The Journal of clinical investigation.

[73]  J. R. Smith,et al.  Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. , 1990, The Journal of biological chemistry.

[74]  D. Russell,et al.  Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. , 1989, The Journal of biological chemistry.

[75]  H. Mabuchi,et al.  Development of coronary heart disease in familial hypercholesterolemia. , 1989, Circulation.

[76]  D. Russell,et al.  Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. , 1988, The Journal of biological chemistry.

[77]  T. Südhof,et al.  Sterol-dependent repression of low density lipoprotein receptor promoter mediated by 16-base pair sequence adjacent to binding site for transcription factor Sp1. , 1988, The Journal of biological chemistry.

[78]  T. Miettinen,et al.  Mortality and cholesterol metabolism in familial hypercholesterolemia. Long-term follow-up of 96 patients. , 1988, Arteriosclerosis.

[79]  H. Hobbs,et al.  Multiple crm- mutations in familial hypercholesterolemia. Evidence for 13 alleles, including four deletions. , 1988, The Journal of clinical investigation.

[80]  R. Krauss,et al.  Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[81]  T. Südhof,et al.  Three direct repeats and a TATA-like sequence are required for regulated expression of the human low density lipoprotein receptor gene. , 1987, The Journal of biological chemistry.

[82]  D. Russell,et al.  Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. , 1987, The Journal of biological chemistry.

[83]  S. Grundy,et al.  In vivo evidence for reduced binding of low density lipoproteins to receptors as a cause of primary moderate hypercholesterolemia. , 1986, The Journal of clinical investigation.

[84]  M. Brown,et al.  A receptor-mediated pathway for cholesterol homeostasis. , 1986, Science.

[85]  D. Russell,et al.  Deletion of clustered O-linked carbohydrates does not impair function of low density lipoprotein receptor in transfected fibroblasts. , 1986, The Journal of biological chemistry.

[86]  T. Südhof,et al.  Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. , 1985, Science.

[87]  D. Russell,et al.  The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA , 1984, Cell.

[88]  J. Goldstein,et al.  Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia , 1982, Cell.

[89]  M. Brown,et al.  Purification of the low density lipoprotein receptor, an acidic glycoprotein of 164,000 molecular weight. , 1982, The Journal of biological chemistry.

[90]  M. Brown,et al.  Monoclonal antibodies to the low density lipoprotein receptor as probes for study of receptor-mediated endocytosis and the genetics of familial hypercholesterolemia. , 1981, The Journal of biological chemistry.

[91]  M. Brown,et al.  Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. , 1974, The Journal of biological chemistry.

[92]  M. Brown,et al.  Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[93]  R. Levy,et al.  The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. , 1972, The Journal of clinical investigation.

[94]  H. Schuster,et al.  Familial defective apolipoprotein B-100: a common cause of primary hypercholesterolemia , 2004, The clinical investigator.

[95]  R. Galetto,et al.  A mutation (-49C>T) in the promoter of the low density lipoprotein receptor gene associated with familial hypercholesterolemia. , 2002, Journal of lipid research.

[96]  S. Grundy,et al.  National Cholesterol Education Program Third Report of the National Cholesterol Education Program ( NCEP ) Expert Panel on Detection , Evaluation , and Treatment of High Blood Cholesterol in Adults ( Adult Treatment Panel III ) Final Report , 2022 .

[97]  T. Nakamura [LDL apheresis]. , 2001, Nihon rinsho. Japanese journal of clinical medicine.

[98]  V. Gudnason,et al.  Identification of recurrent and novel mutations in exon 4 of the LDL receptor gene in patients with familial hypercholesterolemia in the United Kingdom. , 1993, Arteriosclerosis and Thrombosis A Journal of Vascular Biology.

[99]  H. Hobbs,et al.  Molecular genetics of the LDL receptor gene in familial hypercholesterolemia , 1992, Human mutation.

[100]  S. Grundy,et al.  Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[101]  T. Farag,et al.  Familial hypercholesterolemia. , 1988, Journal of the Royal Society of Medicine.