ON CONFIDENCE INTERVALS FOR GENERALIZED ADDITIVE MODELS BASED ON PENALIZED REGRESSION SPLINES
暂无分享,去创建一个
[1] Edmund Taylor Whittaker. On a New Method of Graduation , 1922, Proceedings of the Edinburgh Mathematical Society.
[2] J. Lindeberg. Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .
[3] C. Reinsch. Smoothing by spline functions. II , 1971 .
[4] Jean Duchon,et al. Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.
[5] G. Wahba. Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .
[6] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[7] R. Parker,et al. Discussion of Dr Silverman''s paper , 1985 .
[8] Douglas Nychka,et al. Bayesian Confidence Intervals for Smoothing Splines , 1988 .
[9] David W. Scott. How Far Are Automatically Chosen Regression Smoothing Parameters From Their Optimum?: Comment , 1988 .
[10] G. Wahba. Spline models for observational data , 1990 .
[11] N. Breslow,et al. Approximate inference in generalized linear mixed models , 1993 .
[12] G. Wahba,et al. Semiparametric Analysis of Variance with Tensor Product Thin Plate Splines , 1993 .
[13] B. Silverman,et al. Nonparametric regression and generalized linear models , 1994 .
[14] Paul H. C. Eilers,et al. Flexible smoothing with B-splines and penalties , 1996 .
[15] Felix Abramovich,et al. Improved inference in nonparametric regression using Lk-smoothing splines , 1996 .
[16] I. Priede,et al. Improving the precision of the daily egg production method using generalized additive models , 1997 .
[17] Paul H. C. Eilers,et al. Direct generalized additive modeling with penalized likelihood , 1998 .
[18] R. Tibshirani,et al. Bayesian Backfitting , 1998 .
[19] Adrian F. M. Smith,et al. Automatic Bayesian curve fitting , 1998 .
[20] David L. Borchers,et al. Spatiotemporal modelling for the annual egg production method of stock assessment using generalized additive models , 1998 .
[21] X. Lin,et al. Inference in generalized additive mixed modelsby using smoothing splines , 1999 .
[22] D. Madigan,et al. Correction to: ``Bayesian model averaging: a tutorial'' [Statist. Sci. 14 (1999), no. 4, 382--417; MR 2001a:62033] , 2000 .
[23] S. Wood. Modelling and smoothing parameter estimation with multiple quadratic penalties , 2000 .
[24] L. Fahrmeir,et al. Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .
[25] Chong Gu. Smoothing Spline Anova Models , 2002 .
[26] Chong Gu,et al. Penalized likelihood regression: General formulation and efficient approximation , 2002 .
[27] S. Wood,et al. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling , 2002 .
[28] S. Wood. Thin plate regression splines , 2003 .
[29] B. Ripley,et al. Semiparametric Regression: Preface , 2003 .