Tdp-43 cryptic exons are highly variable between cell types

[1]  V. Plagnol,et al.  Quantitative analysis of cryptic splicing associated with TDP-43 depletion , 2016, BMC Medical Genomics.

[2]  M. Zhang,et al.  Inhibition of nonsense-mediated RNA decay by ER stress , 2017, RNA.

[3]  Joshua J. White,et al.  Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. , 2016, Human molecular genetics.

[4]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[5]  P. Wong,et al.  Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer’s mouse model , 2016, Acta Neuropathologica.

[6]  P. Wong,et al.  PTBP1 and PTBP2 Repress Nonconserved Cryptic Exons. , 2016, Cell reports.

[7]  Daniel Hornburg,et al.  TDP‐43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons , 2016, The EMBO journal.

[8]  A. Hiniker,et al.  T-Cell-Mediated Inflammatory Myopathies in HIV-Positive Individuals: A Histologic Study of 19 Cases , 2016, Journal of neuropathology and experimental neurology.

[9]  G. Cox,et al.  Hyperactive Somatostatin Interneurons Contribute to Excitotoxicity in Neurodegenerative Disorders , 2016, Nature Neuroscience.

[10]  Jennifer L. Whitwell,et al.  Updated TDP-43 in Alzheimer’s disease staging scheme , 2016, Acta Neuropathologica.

[11]  P. Wong,et al.  TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD , 2015, Science.

[12]  J. Trojanowski,et al.  Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43 , 2015, Acta Neuropathologica.

[13]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[14]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[15]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[16]  Steven A Greenberg,et al.  Evaluation and construction of diagnostic criteria for inclusion body myositis , 2014, Neurology.

[17]  Robert H. Brown,et al.  Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis , 2014, Proceedings of the National Academy of Sciences.

[18]  K. Eggan,et al.  Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations , 2014, Neuron.

[19]  C. Jack,et al.  Staging TDP-43 pathology in Alzheimer’s disease , 2014, Acta Neuropathologica.

[20]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[21]  E. Kremmer,et al.  Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth , 2013, Proceedings of the National Academy of Sciences.

[22]  D. Price,et al.  Rodent models of TDP-43: Recent advances , 2012, Brain Research.

[23]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[24]  Y. Kawahara,et al.  TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes , 2012, Proceedings of the National Academy of Sciences.

[25]  C. Shen,et al.  Regulation of Autophagy by Neuropathological Protein TDP-43* , 2011, The Journal of Biological Chemistry.

[26]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[27]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[28]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[29]  T. Lloyd Novel therapeutic approaches for inclusion body myositis , 2010, Current opinion in rheumatology.

[30]  D. Price,et al.  Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism , 2010, Proceedings of the National Academy of Sciences.

[31]  G. Schellenberg,et al.  Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis , 2010, Acta Neuropathologica.

[32]  S. Jiang,et al.  TDP‐43, a neuro‐pathosignature factor, is essential for early mouse embryogenesis , 2009, Genesis.

[33]  C. Sephton,et al.  TDP-43 Is a Developmentally Regulated Protein Essential for Early Embryonic Development* , 2009, The Journal of Biological Chemistry.

[34]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[35]  A. D’Ambrogio,et al.  Depletion of TDP‐43 affects Drosophila motoneurons terminal synapsis and locomotive behavior , 2009, FEBS letters.

[36]  A. Pestronk,et al.  TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia , 2008, Journal of Neurology, Neurosurgery, and Psychiatry.

[37]  N. Rosenthal,et al.  Analysis of CRE‐mediated recombination driven by myosin light chain 1/3 regulatory elements in embryonic and adult skeletal muscle: A tool to study fiber specification , 2008, Genesis.

[38]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[39]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[40]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[41]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[42]  T. Lemberger,et al.  A CamKIIalpha iCre BAC allows brain-specific gene inactivation. , 2001, Genesis.