Photoelectrolysis and physical properties of the semiconducting electrode WO2

The behavior of semiconducting electrodes for photoelectrolysis of water is examined in terms of the physical properties of the semiconductor. The semiconductor‐electrolyte junction is treated as a simple Schottky barrier, and the photocurrent is described using this model. The approach is appropriate since large‐band‐gap semiconductors have an intrinsic oxygen overpotential which removes the electrode reaction kinetics as the rate‐limiting step. The model is successful in describing the wavelength and potential dependence of the photocurrent in WO3 and allows a determination of the band gap, optical absorption depth, minority‐carrier diffusion length, flat‐band potential, and the nature of the fundamental optical transition (direct or indirect). It is shown for WO3 that minority‐carrier diffusion plays a limited role in determining the photoresponse of the semiconductor‐electrolyte junction. There are indications that the diffusion length in this low carrier mobility material is determined by diffusion‐c...

[1]  F. Cardon,et al.  On the Interpretation of Mott‐Schottky Plots Determined at Semiconductor/Electrolyte Systems , 1975 .

[2]  G. Acket,et al.  Hall-measurements on slightly reduced rutile (TiO2) , 1964 .

[3]  S. Tanisaki Crystal Structure of Monoclinic Tungsten Trioxide at Room Temperature , 1960 .

[4]  R. D. Nasby,et al.  Tungsten trioxide as an electrode for photoelectrolysis of water , 1976 .

[5]  Wolfgang W. Gärtner,et al.  Depletion-Layer Photoeffects in Semiconductors , 1959 .

[6]  B. J. Baliga,et al.  Measurement of energy band gap using an electrolyte‐semiconductor junction: Water–gallium indium arsenide alloys , 1975 .

[7]  F. Lohmann Notizen: Fermi-Niveau und Flachbandpotential von Molekülkristallen aromatischer Kohlenwasserstoffe , 1967 .

[8]  R. C. Hughes Bulk recombination of charge carriers in polymer films: Poly‐N‐vinylcarbazole complexed with trinitrofluorenone , 1972 .

[9]  J. Hoare,et al.  The electrochemistry of oxygen , 1968 .

[10]  Arthur J. Nozik,et al.  p‐n photoelectrolysis cells , 1976 .

[11]  H. Gerischer,et al.  Electrochemical photo and solar cells principles and some experiments , 1975 .

[12]  Y. G. Chai,et al.  Semiconductor-electrolyte photovoltaic cell energy conversion efficiency , 1975 .

[13]  E. Salje A new type of electro-optic effect in semiconducting WO3 , 1974 .

[14]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[15]  G. Harbeke Absorption edge in ferroelectric SbSI under electric fields , 1963 .

[16]  M. De Handbuch der Physik , 1957 .