A study of the thermal conductivity of granular silica materials for VIPs at different levels of gaseous pressure and external loads

Abstract Fast and reliable methods for the determination of thermal properties of core materials for vacuum insulation panels (VIPs) are needed. It is of great importance to know the thermal performance of a VIP core at different levels of vacuum and external loads. In this study a new self-designed device, consisting of two cylindrical cavities connected to a Transient Plane Source instrument, is used to determine the thermal conductivity of low-density nanoporous silica powders, from atmospheric pressure down to 0.1 mbar while applying different levels of external pressure up to 4 bars. The study includes a brief theoretical discussion of methods. The TPS is validated through comparison with available data for commercial silica as well as through independent stationary measurements with a hot plate apparatus and with a Transient Hot Bridge method. The different materials illustrate clear but different trends for the thermal conductivity as a function of the level of vacuum and external pressure. The analysis of experimental results shows that the transient methods are less suitable for measuring the thermal conductivity of low-density silica powders, especially for the cases when the density is less than a limit at which the heat transfer by radiation becomes dominant compared to pure conduction.

[1]  Ellann Cohen,et al.  Thermal properties of advanced aerogel insulation , 2011 .

[2]  E. Rosenbaum,et al.  Thermal conductivity of methane hydrate from experiment and molecular simulation. , 2007, The journal of physical chemistry. B.

[3]  Kimio Kawakita,et al.  Some considerations on powder compression equations , 1971 .

[4]  Folke Björk,et al.  Properties of thermal insulation materials during extreme environment changes , 2009 .

[5]  Dominique Baillis,et al.  Heat transfer modeling in vacuum insulation panels containing nanoporous silicas—A review , 2012 .

[6]  A. E. Maxwell,et al.  The measurement of thermal conductivity of deep‐sea sediments by a needle‐probe method , 1959 .

[7]  Kimio Kawakita,et al.  An Empirical Equation of State for Powder Compression , 1965 .

[8]  V. Gun'ko,et al.  Morphology and surface properties of fumed silicas. , 2005, Journal of colloid and interface science.

[9]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[10]  Bernard Yrieix,et al.  VIP service life assessment: Interactions between barrier laminates and core material, and significance of silica core ageing , 2014 .

[11]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[12]  D. Avnir,et al.  Recommendations for the characterization of porous solids (Technical Report) , 1994 .

[13]  J. Cremers Typology of Applications for Opaque and Translucent VIP in the Building Envelope and their Potential for Temporary Thermal Insulation. , 2005 .

[14]  J. Fricke,et al.  Thermal conductivity of silica aerogel powders at temperatures from 10 to 275 K , 1995 .

[15]  Y. Yi,et al.  The role of interparticle contact in conductive properties of random particulate materials , 2008 .

[16]  K. Brodt Thermal insulations: Cfc-alternatives and vacuum insulation , 1995 .

[17]  Lu Han,et al.  Effect of Al2O3 Powder on Properties of Fumed Silica Thermal Insulating Composites Using Mechanofusion Technique , 2011 .

[18]  V. Vacquier,et al.  Experiment on estimating thermal conductivity of sedimentary rocks from oil well logging , 1988 .

[19]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[20]  Leon R. Glicksman,et al.  Mechanical and thermal performance of aerogel-filled sandwich panels for building insulation , 2014 .

[21]  Harjit Singh,et al.  Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite—Fumed silica composite for effective vacuum insulation panel (VIP) core , 2014 .

[22]  Samuel Brunner,et al.  Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications , 2012 .

[23]  Silas E. Gustafsson A Non-Steady-State Method of Measuring the Thermal Conductivity of Transparent Liquids , 1967 .

[24]  Dominique Baillis,et al.  Modelling of the conductive heat transfer through nano-structured porous silica materials , 2013 .

[25]  J. Fricke,et al.  THERMAL PROPERTIES OF SILICA AEROGELS , 1989 .

[26]  R. Caps,et al.  Thermal Conductivity of Opacified Powder Filler Materials for Vacuum Insulations1 , 2000 .

[27]  Bjørn Petter Jelle,et al.  Traditional, state-of-the-art and future thermal building insulation materials and solutions Prope , 2011 .

[28]  M. Kulkarni,et al.  Effect of glycerol additive on physical properties of hydrophobic silica aerogels , 2003 .

[29]  Dominique Baillis,et al.  Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators , 2006 .

[30]  Michael Ehrmanntraut,et al.  Evacuated insulation panels filled with pyrogenic silica powders : properties and applications , 2001 .

[31]  J. Cull Thermal contact resistance in transient conductivity measurements , 1978 .

[32]  Krishpersad Manohar,et al.  Measurement of apparent thermal conductivity by the thermal probe method , 2000 .

[33]  M. Founti,et al.  Thermal performance of a building envelope incorporating ETICS with vacuum insulation panels and EPS , 2014 .

[34]  Kelly E. Parmenter,et al.  Mechanical properties of silica aerogels , 1998 .

[35]  Yi He,et al.  Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations , 2005 .

[36]  O. Johansen Thermal Conductivity of Soils , 1977 .

[37]  U. Hammerschmidt,et al.  Guarded Hot-Plate (GHP) Method: Uncertainty Assessment , 2002 .

[38]  R. P. Reed,et al.  Advances in Cryogenic Engineering Materials , 1988 .

[39]  J. Fricke,et al.  Radiation-conduction interaction: an investigation on silica aerogels , 1996 .

[40]  Z. Acem,et al.  A quadrupolar complete model of the hot disc , 2007 .

[41]  Hans-Peter Ebert,et al.  Influence of radiative transport on hot-wire thermal conductivity measurements , 1998 .

[42]  J. Blackwell A Transient-Flow Method for Determination of Thermal Constants of Insulating Materials in Bulk Part I—Theory , 1954 .

[43]  Yimin Gao,et al.  Thermal insulation property and service life of vacuum insulation panels with glass fiber chopped strand as core materials , 2014 .

[44]  S. Gustafsson,et al.  Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer , 2000 .

[45]  Hubert Schwab,et al.  Dependence of Thermal Conductivity on Water Content in Vacuum Insulation Panels with Fumed Silica Kernels , 2005 .

[46]  Kimio Kawakita,et al.  A Comparison of Equations for Powder Compression , 1966 .

[47]  A. Sawicki,et al.  Elastic moduli of non-cohesive particulate materials , 1998 .

[48]  K. Ghazi Wakili,et al.  Effective thermal conductivity of vacuum insulation panels , 2004 .

[49]  J. Xamán,et al.  Analysis of the temperature distribution in a guarded hot plate apparatus for measuring thermal conductivity , 2009 .

[50]  Arild Gustavsen,et al.  Vacuum insulation panels for building applications: A review and beyond , 2010 .

[51]  Torgrim Log,et al.  Transient plane source (TPS) technique for measuring thermal transport properties of building materials , 1995 .

[52]  D. H. Everett,et al.  INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION COMMISSION ON COLLOID AND SURFACE CHEMISTRY* Subcommittee on Characterization of Porous Solids RECOMMENDATIONS FOR THE CHARACTERIZATION OF POROUS SOLIDS , 2004 .

[53]  Jacob Fish,et al.  Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids , 2008 .

[54]  Dominique Baillis,et al.  Analysis of the hot-disk technique applied to low-density insulating materials , 2013 .

[55]  Mukesh Limbachiya,et al.  Vacuum insulation panels (VIPs) for building construction industry: a review of the contemporary developments and future directions , 2011 .

[56]  Leon R. Glicksman,et al.  Thermal conductivity and characterization of compacted, granular silica aerogel , 2014 .

[57]  S. Gustafsson,et al.  Thermal conductivity as an indicator of fat content in milk , 2006 .

[58]  M. N. Khan,et al.  Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids , 1979 .

[59]  J. Sass,et al.  A line source method for measuring the thermal conductivity and diffusivity of cylindrical specimens of rock and other poor conductors , 1964 .

[60]  Didier Bouvard,et al.  Modeling the effective thermal conductivity of random packing of spheres through densification , 1996 .

[61]  J. Fricke,et al.  Thermal properties of silica aerogels between 1.4 and 330 K , 1992 .

[62]  Ken Welch,et al.  On the physical interpretation of the Kawakita and Adams parameters derived from confined compression of granular solids , 2008 .

[63]  S. Malinarič Parameter estimation in dynamic plane source method , 2004 .

[64]  U. Heinemann Influence of Water on the Total Heat Transfer in ‘Evacuated’ Insulations , 2008 .

[65]  Saleh A. Al-Ajlan,et al.  Measurements of thermal properties of insulation materials by using transient plane source technique , 2006 .

[66]  S. Brunner,et al.  Effective thermal conductivity of a staggered double layer of vacuum insulation panels , 2011 .

[67]  D. Maillet,et al.  Diffusivity measurement of semi-transparent media: model of the coupled transient heat transfer and experiments on glass, silica glass and zinc selenide , 2004 .

[68]  P. Scheuerpflug,et al.  Low-temperature thermal transport in silica aerogels , 1991 .

[69]  Tae-Ho Song,et al.  Development of the Measurement Apparatus for the Effective Thermal Conductivity of Core Material , 2011 .

[70]  F. Huang,et al.  The Parameters Identification Method of Radiation Heat Transfer for Nanoporous Materials , 2013 .

[71]  P. Karami,et al.  Textural and thermal conductivity properties of a low density mesoporous silica material , 2014 .

[72]  Ulrich Gross,et al.  Radiation effects on transient hot-wire measurements in absorbing and emitting porous media , 2004 .

[73]  George W. Scherer,et al.  Effect of drying on properties of silica gel , 1997 .

[74]  Js Kwon Jae-Sung Kwon,et al.  Effective thermal conductivity of various filling materials for vacuum insulation panels , 2009 .