The concordance genus of knots

In knot concordance three genera arise naturally, g(K), g 4 (K), and g c (K): these are the classical genus, the 4-ball genus, and the concordance genus, defined to be the minimum genus among all knots concordant to K. Clearly 0 < g 4 (K) ≤ g c (K) ≤ g(K). Casson and Nakanishi gave examples to show that g 4 (K) need not equal g c (K). We begin by reviewing and extending their results. For knots representing elements in A, the concordance group of algebraically slice knots, the relationships between these genera are less clear. Casson and Gordon's result that A is nontrivial implies that g 4 (K) can be nonzero for knots in A. Gilmer proved that g 4 (K) can be arbitrarily large for knots in A. We will prove that there are knots K in A with g 4 (K) = 1 and g c (K) arbitrarily large. Finally, we tabulate g c for all prime knots with 10 crossings and, with two exceptions, all prime knots with fewer than 10 crossings. This requires the description of previously unnoticed concordances.

[1]  D. Rolfsen Knots and Links , 2003 .

[2]  渋谷 哲夫 Local Moves and 4-Genus of Knots , 2000 .

[3]  C. Livingston,et al.  Concordance and mutation , 1999, math/9912174.

[4]  P. Teichner,et al.  Knot concordance, Whitney towers and L^2 signatures , 1999, math/9908117.

[5]  C. Livingston,et al.  TWISTED KNOT POLYNOMIALS: INVERSION, MUTATION AND CONCORDANCE , 1999 .

[6]  Charles Livingston,et al.  TWISTED ALEXANDER INVARIANTS, REIDEMEISTER TORSION, AND CASSON–GORDON INVARIANTS , 1999 .

[7]  E. Witten Monopoles and four-manifolds , 1994, hep-th/9411102.

[8]  Masaaki Wada,et al.  Twisted Alexander polynomial for finitely presentable groups , 1994 .

[9]  P. Kronheimer,et al.  Gauge theory for embedded surfaces, II , 1993 .

[10]  C. Livingston,et al.  The Casson-Gordon invariant and link concordance , 1992 .

[11]  L. Rudolph Some topologically locally-flat surfaces in the complex projective plane , 1984 .

[12]  P. Gilmer SLICE KNOTS IN S3 , 1983 .

[13]  P. Gilmer On the slice genus of knots , 1982 .

[14]  S. Akbulut,et al.  Branched covers of surfaces in 4-manifolds , 1980 .

[15]  Hisako Kondo Knots of unknotting number 1 and their Alexander polynomials , 1979 .

[16]  J. Levine Knot cobordism groups in codimension two , 1969 .

[17]  A. Tristram Some cobordism invariants for links , 1969, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  J. Levine Invariants of knot cobordism , 1969 .

[19]  K. Murasugi ON A CERTAIN NUMERICAL INVARIANT OF LINK TYPES , 1965 .

[20]  E. Artin Zur Isotopie zweidimensionaler Flächen imR4 , 1925 .

[21]  T. Kim On Knot Concordance , 2006 .

[22]  P. Kronheimer,et al.  Gauge theory for embedded surfaces , II , 1997 .

[23]  Akio Kawauchi,et al.  A Survey of Knot Theory , 1996 .

[24]  Michael H. Freedman,et al.  Topology of 4-manifolds , 1990 .

[25]  A. Marin,et al.  A la recherche de la topologie perdue , 1986 .

[26]  S. Donaldson An application of gauge theory to four-dimensional topology , 1983 .

[27]  Michael H. Freedman,et al.  The topology of four-dimensional manifolds , 1982 .

[28]  Yasutaka Nakanishi A Note on Unknotting Number , 1981 .

[29]  C. Gordon Some aspects of classical knot theory , 1978 .

[30]  T. Matumoto On the signature invariants of a non-singular complex sesqui-linear form , 1977 .

[31]  A. Casson,et al.  On slice knots in dimension three , 1976 .

[32]  M. Kervaire Knot cobordism in codimension two , 1971 .

[33]  J. Conway An enumeration of knots and links, and some of their algebraic properties , 1970 .

[34]  J. Milnor,et al.  Singularities of 2-spheres in 4-space and cobordism of knots , 1966 .

[35]  Horst Schubert,et al.  Die eindeutige Zerlegbarkeit eines Knotens in Primknoten , 1949 .

[36]  Robert Lipshitz,et al.  Algebraic & Geometric Topology , 2023 .