Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements

Abstract : An improved kinetic model for the Meinel bands of OH has been constructed from rate constants and Einstein A coefficients derived in recent laboratory experiments. Using a semiempirical parameterization of the state-to-state rate constants for OH(v) quenching by O2, the absolute OH(v) nightglow radiances are modeled to within the accuracies of the atmospheric constituent concentrations and the radiometric calibrations. Collisional quenching is found to be predominantly multiquantum at high v but single-quantum at low v.

[1]  E. R. Huppi,et al.  Observation of high‐N hydroxyl pure rotation lines in atmospheric emission spectra by the CIRRIS 1A Space Shuttle Experiment , 1992 .

[2]  H. Kimura,et al.  Initial distribution of vibration of the OH radicals produced in the H + O3 → OH(X2Π1/2,3/2) + O2 reaction. Chemiluminescence by a crossed beam technique , 1985 .

[3]  J. R. Lowell,et al.  Analysis of hydroxyl earthlimb airglow emissions: Kinetic model for state‐to‐state dynamics of OH (υ,N) , 1994 .

[4]  A. T. Stair,et al.  Rocket measurements of the altitude distributions of the hydroxyl airglow. , 1988 .

[5]  D. Truhlar,et al.  Monte Carlo trajectory study of Ar+H2 collisions: Thermally averaged vibrational transition rates at 4500 °K , 1979 .

[6]  D. Thompson Vibrational-rotational-translational energy transfer in argon + hydroxyl. Quasi-classical-trajectory state-to-state cross sections , 1982 .

[7]  Richard H. Picard,et al.  Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow , 1995 .

[8]  M. J. Dyer,et al.  Collisional removal of OH (X 2Π,ν=7) by O2, N2, CO2, and N2O , 1996 .

[9]  J. W. Gallagher,et al.  Critical Survey of Data on the Spectroscopy and Kinetics of Ozone in the Mesosphere and Thermosphere , 1987 .

[10]  Rodney A. Viereck,et al.  Limb view spectrum of the Earth's airglow , 1993 .

[11]  J. Polanyi,et al.  Formation of Vibrationally Excited OH by the Reaction H + O(3). , 1971, Applied optics.

[12]  B. Green,et al.  Einstein coefficients for emission from high rotational states of the OH(X2∏) radical , 1993 .

[13]  R. Levine,et al.  Vibrational energy transfer in molecular collisions: An information theoretic analysis and synthesis , 1975 .

[14]  S. Melo,et al.  Atomic hydrogen and ozone concentrations derived from simultaneous lidar and rocket airglow measurements in the equatorial region , 1996 .

[15]  R. E. Murphy Infrared Emission of OH in the Fundamental and First Overtone Bands , 1971 .

[16]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[17]  P. Espy,et al.  Observation of OH Meinel (7,4) P( N″=13) transitions in the night airglow , 1989 .

[18]  D. Murtagh,et al.  Eton 5: Simultaneous rocket measurements of the OH meinel Δυ = 2 sequence and (8,3) band emission profiles in the nightglow , 1987 .

[19]  V. I. Krassovsky,et al.  Atlas of the airglow spectrum 3000-12400 Å , 1962 .

[20]  I. Mcdade The altitude dependence of the OH(X2Π) vibrational distribution in the nightglow: Some model expectations , 1991 .

[21]  J. E. Spencer,et al.  Some Reactions of OH(v = 1) , 1977 .

[22]  R. P. Lowe,et al.  New hydroxyl transition probabilities and their importance in airglow studies , 1989 .

[23]  J. Kaye On the possible role of the reaction O + HO2 → OH + O2 in OH airglow , 1988 .

[24]  William R. Pendleton,et al.  Evidence for non‐local‐thermodynamic‐equilibrium rotation in the OH nightglow , 1993 .

[25]  H. Takahashi,et al.  Simultaneous measurements of OH(9,4), (8,3), (7,2), (6,2) and (5,1) bands in the airglow , 1981 .

[26]  Ramesh D. Sharma,et al.  Quasiclassical trajectory study of NO vibrational relaxation by collisions with atomic oxygen , 1997 .

[27]  D. Thompson,et al.  Quasiclassical trajectory study of HF(v) by CO , 1992 .

[28]  B. Chalamala,et al.  Collision dynamics of OH(X 2Πi,v=12) , 1990 .

[29]  R. Levine,et al.  From bulk vibrational relaxation data to the detailed (microscopic) rate constants , 1975 .

[30]  D. Tarasick,et al.  Effects of gravity waves on complex airglow chemistries: 2. OH emission , 1992 .

[31]  F. Moreno,et al.  Altitude distribution of vibrationally excited states of atmospheric hydroxyl at levels v = 2 to v = 7 , 1987 .

[32]  Ian W. M. Smith,et al.  Infrared chemiluminescence using a SISAM spectrometer. Reactions producing vibrationally excited HF , 1987 .

[33]  I. Mcdade,et al.  Kinetic parameters related to sources and sinks of vibrationally excited OH in the nightglow , 1987 .

[34]  D. Thompson Quasiclassical trajectory state-to-state cross sections for energy transfer in Ar+ OH(υ = 9,J = 0,4, and 8) collisions , 1982 .

[35]  J. Dodd,et al.  Formation and vibrational relaxation of OH (X 2Πi,v) by O2 and CO2 , 1991 .

[36]  David J. Nesbitt,et al.  H+O3 Fourier‐transform infrared emission and laser absorption studies of OH (X 2Π) radical: An experimental dipole moment function and state‐to‐state Einstein A coefficients , 1990 .

[37]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[38]  T. Kleindienst,et al.  The reaction of hydrogen atoms with ozone as a source of vibrationally excited OH(X 2πi)v = 9 for kinetic studies , 1981 .

[39]  R. Thomas Atomic hydrogen and atomic oxygen density in the mesopause region: Global and seasonal variations deduced from Solar Mesosphere Explorer near-infrared emissions , 1990 .