Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and its Tectonic Implications

Large peridotite massifs are scattered along the 1500 km length of the Yarlung-Zangbo Suture Zone (southern Tibet, China), the major suture between Asia and Greater India. Diamonds occur in the peridotites and chromitites of several massifs, together with an extensive suite of trace phases that indicate extremely low fO(2) (SiC, nitrides, carbides, native elements) and/or ultrahigh pressures (UHP) (diamond, TiO2 II, coesite, possible stishovite). New physical and isotopic (C, N) studies of the diamonds indicate that they are natural, crystallized in a disequilibrium, high-T environment, and spent only a short time at mantle temperatures before exhumation and cooling. These constraints are difficult to reconcile with previous models for the history of the diamond-bearing rocks. Possible evidence for metamorphism in or near the upper part of the Transition Zone includes the following: (1) chromite (in disseminated, nodular and massive chromitites) containing exsolved pyroxenes and coesite, suggesting inversion from a high-P polymorph of chromite; (2) microstructural studies suggesting that the chromitites recrystallized from fine-grained, highly deformed mixtures of wadsleyite and an octahedral polymorph of chromite; (3) a new cubic Mg-silicate, with the space group of ringwoodite but an inverse-spinel structure (all Si in octahedral coordination); (4) harzburgites with coarsely vermicular symplectites of opx + Cr-Al spinel +/- cpx; reconstructions suggest that these are the breakdown products of majoritic garnets, with estimated minimum pressures to > 13 GPa. Evidence for a shallow pre-metamorphic origin for the chromitites and peridotites includes the following: (1) trace-element data showing that the chromitites are typical of suprasubduction-zone (SSZ) chromitites formed by magma mixing or mingling, consistent with Hf-isotope data from magmatic (375 Ma) zircons in the chromitites; (2) the composition of the new cubic Mg-silicate, which suggests a low-P origin as antigorite, subsequently dehydrated; (3) the peridotites themselves, which carry the trace element signature of metasomatism in an SSZ environment, a signature that must have been imposed before the incorporation of the UHP and low-fO(2) phases. A proposed P-T-t path involves the original formation of chromitites in mantle-wedge harzburgites, subduction of these harzburgites at c. 375 Ma, residence in the upper Transition Zone for > 200 Myr, and rapid exhumation at c. 170-150 Ma or 130-120 Ma. Os-isotope data suggest that the subducted mantle consisted of previously depleted subcontinental lithosphere, dragged down by a subducting oceanic slab. Thermomechanical modeling shows that roll-back of a (much later) subducting slab would produce a high-velocity channelized upwelling that could exhume the buoyant harzburgites (and their chromitites) from the Transition Zone in < 10 Myr. This rapid upwelling, which may explain some characteristics of the diamonds, appears to have brought some massifs to the surface in forearc or back-arc basins, where they provided a basement for oceanic crust. This model can reconcile many apparently contradictory petrological and geological datasets. It also defines an important, previously unrecognized geodynamic process that may have operated along other large suture zones such as the Urals.

[1]  W. Griffin,et al.  Southward trench migration at ~130-120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites , 2016 .

[2]  W. Griffin,et al.  Diamonds in ophiolites: Contamination or a new diamond growth environment? , 2015 .

[3]  W. Griffin,et al.  Messengers from the deep: Fossil wadsleyite-chromite microstructures from the Mantle Transition Zone , 2015, Scientific Reports.

[4]  Y. Dilek,et al.  Petrological and Os isotopic constraints on the origin of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, Western Tibet , 2015 .

[5]  Xian‐Hua Li,et al.  Devonian to Permian evolution of the Paleo-Tethys Ocean: New evidence from U–Pb zircon dating and Sr–Nd–Pb isotopes of the Darrehanjir–Mashhad "ophiolites", NE Iran , 2015 .

[6]  S. Reddy,et al.  The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction. , 2015 .

[7]  P. Robinson,et al.  The origin and significance of crustal minerals in ophiolitic chromitites and peridotites , 2015 .

[8]  P. Robinson,et al.  Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals , 2015 .

[9]  P. Robinson,et al.  Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet , 2015 .

[10]  Y. Dilek,et al.  Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet , 2015 .

[11]  P. Robinson,et al.  Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet , 2015 .

[12]  W. Griffin,et al.  Tibetan chromitites: Excavating the slab graveyard , 2015 .

[13]  M. Searle,et al.  U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications , 2015 .

[14]  Q. Xiong Shenglikou and Zedang peridotite massifs, Tibet (China): upper mantle processes and geodynamic significance , 2015 .

[15]  W. Kuhnt,et al.  Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum , 2014 .

[16]  A. Levander,et al.  Subduction-driven recycling of continental margin lithosphere , 2014, Nature.

[17]  D. Eaton,et al.  Plateau uplift in western Canada caused by lithospheric delamination along a craton edge , 2014 .

[18]  E. Garzanti,et al.  Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite , 2014 .

[19]  Fu-Yuan Wu,et al.  Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault , 2014 .

[20]  R. Maas,et al.  Age and composition of meta‐ophiolite from the Rhodope Middle Allochthon (Satovcha, Bulgaria): A test for the maximum‐allochthony hypothesis of the Hellenides , 2014 .

[21]  J. Malpas,et al.  Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments , 2014 .

[22]  P. Robinson,et al.  Diamonds in Ophiolites , 2014 .

[23]  Zhiqin Xu,et al.  In‐situ Moissanite in Dunite: Deep Mantle Origin of Mantle Peridotite in Luobusa Ophiolite, Tibet , 2014 .

[24]  Louis Moresi,et al.  Dynamics of continental accretion , 2014, Nature.

[25]  W. Griffin,et al.  Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals , 2014 .

[26]  W. Griffin,et al.  Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites , 2014 .

[27]  Wu Fu Yarlung Zangbo ophiolite: A critical updated view , 2014 .

[28]  S. Arai Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference , 2013 .

[29]  Chengshan Wang,et al.  Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet , 2013 .

[30]  Zhai Qing-guo,et al.  Study on the Tectonic Setting for the Ophiolites in Xigaze, Tibet , 2013 .

[31]  F. Seifert,et al.  Ferric Iron in the Upper Mantle and In Transition Zone Assemblages: Implications for Relative Oxygen Fugacities in the Mantle , 2013 .

[32]  I. Katayama,et al.  Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet , 2013 .

[33]  P. Parseval,et al.  A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions , 2012 .

[34]  A. Sobolev,et al.  A New Model for Barberton Komatiites: Deep Critical Melting with High Melt Retention , 2012 .

[35]  Chengshan Wang,et al.  The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys , 2012 .

[36]  W. McDonough,et al.  Trace element partitioning between majoritic garnet and silicate melt at 10-17 GPa: Implications for deep mantle processes , 2012 .

[37]  Chengshan Wang,et al.  Discovery of a dismembered metamorphic sole in the Saga ophiolitic mélange, South Tibet: Assessing an Early Cretaceous disruption of the Neo-Tethyan supra-subduction zone and consequences on basin closing , 2012 .

[38]  Chengshan Wang,et al.  Revision of the Cretaceous–Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone , 2012 .

[39]  Fu-Yuan Wu,et al.  Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification , 2012 .

[40]  Chengshan Wang,et al.  Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet , 2012 .

[41]  S. Ren-deng Recycling of Ancient Sub-Continental Lithospheric Mantle Constraints on the Genesis of the Ophiolitic Podiform Chromitites , 2012 .

[42]  W. Griffin,et al.  Melt/mantle mixing produces podiform chromite deposits in ophiolites : implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet , 2012 .

[43]  J. Ali,et al.  Detrital zircon U-Pb ages along the Yarlung-Tsangpo suture zone, Tibet: Implications for oblique convergence and collision between India and Asia , 2011 .

[44]  P. Robinson,et al.  Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, Southern Tibet , 2011 .

[45]  Chengshan Wang,et al.  Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet , 2011 .

[46]  H. Furnes,et al.  Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere , 2011 .

[47]  Xiong Fahui,et al.  Petrology and geochronology of MOR gabbro in the Purang ophiolite of western Tibet,China , 2011 .

[48]  N. On,et al.  Petrology and geochronology of MOR gabbro in the Purang ophiolite of western Tibet,China , 2011 .

[49]  X. Fa Zircon U-Pb ages of the Dongbo ophiolite in the western Yarlung Zangbo suture zone and their geological significance , 2011 .

[50]  Chengshan Wang,et al.  Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo-Tethys? , 2011 .

[51]  Xiumian Hu,et al.  Provenance of the Liuqu Conglomerate in southern Tibet: A Paleogene erosional record of the Himalayan–Tibetan orogen , 2010 .

[52]  S. Arai Possible recycled origin for ultrahigh-pressure chromitites in ophiolites , 2010 .

[53]  T. Ruskov,et al.  Mössbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: implications for a highly reduced deep mantle , 2010 .

[54]  Wei-Qiang Ji,et al.  Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet , 2010 .

[55]  S. Wilde,et al.  Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism , 2010 .

[56]  Jin Zhen-min,et al.  Deformation microstructures of mantle peridotite from Luobusha ophiolite, Tibet, China and its geological implication , 2010 .

[57]  P. Weber,et al.  High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite , 2009, Proceedings of the National Academy of Sciences.

[58]  G. Lesage,et al.  Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an arc-back-arc origin , 2009 .

[59]  Chengshan Wang,et al.  Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet , 2009 .

[60]  Xiangzhen Xu,et al.  Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet , 2009 .

[61]  K. Hirose,et al.  Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet , 2009 .

[62]  Zhang Yuquan SHRIMP U-Pb Dating for the Gabbro in Qunrang Ophiolite,Tibet:The Geochronology Constraint for the Development of Eastern Tethys Basin , 2009 .

[63]  Juan Carlos Afonso,et al.  Effects of compositional and rheological stratifications on small‐scale convection under the oceans: Implications for the thickness of oceanic lithosphere and seafloor flattening , 2008 .

[64]  D. Frost,et al.  The Redox State of Earth's Mantle , 2008 .

[65]  T. Morishita,et al.  Origin and significance of spinel–pyroxene symplectite in lherzolite xenoliths from Tallante, SE Spain , 2008 .

[66]  Chengshan Wang,et al.  Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet , 2008 .

[67]  Chengshan Wang,et al.  Upper Jurassic–Lower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas , 2008 .

[68]  Y. Jingsui,et al.  Exsolutions of Diopside and Magnetite in Olivine from Mantle Dunite, Luobusa Ophiolite, Tibet, China , 2008 .

[69]  Zhang Yu-quan SHRIMP U-Pb dating for diabase in Sangsang ophiolite,Xizang,China:Geochronological constraint for development of eastern Tethys basin , 2008 .

[70]  W. Griffin Major transformations reveal Earth's deep secrets , 2008 .

[71]  S. Karato Deformation of Earth Materials: Contents , 2008 .

[72]  唐戸 俊一郎,et al.  Deformation of Earth Materials : an Introduction to the Rheology of Solid Earth , 2008 .

[73]  P. Robinson,et al.  Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet , 2007 .

[74]  U. Golla‐Schindler,et al.  Metal saturation in the upper mantle , 2007, Nature.

[75]  W. Griffin,et al.  Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet , 2007 .

[76]  A. Leier,et al.  Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, Southern Tibet , 2007 .

[77]  J. Ali,et al.  When and where did India and Asia collide , 2007 .

[78]  J. Ali,et al.  Shoshonites in Southern Tibet Record Late Jurassic Rifting of a Tethyan Intraoceanic Island Arc , 2007, The Journal of Geology.

[79]  G. B. Piccardo,et al.  Melt/peridotite interaction in the Southern Lanzo peridotite: Field, textural and geochemical evidence , 2007 .

[80]  I. Katayama,et al.  Imbricate structure of the Luobusa Ophiolite and surrounding rock units, southern Tibet , 2007 .

[81]  R. Huene,et al.  Crustal recycling at modern subduction zones applied to the past—Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction , 2007 .

[82]  K. Litasov,et al.  Effect of water on the phase relations in Earth's mantle and deep water cycle , 2007 .

[83]  R. Hatcher 4-D framework of continental crust , 2007 .

[84]  Guoqing Zhou,et al.  SHRIMP zircon U-Pb dating for gabbro from the Tiding ophiolite in Tibet , 2006 .

[85]  Wei Dongliang Sm-Nd Isochron Age of Zedang Ophiolite in Tibet and Its Significance , 2006 .

[86]  Z. Lifeng SHRIMP Age Determination of the Diabase in Luobusa Ophiolite, Southern Xizang (Tibet) , 2006 .

[87]  A. Babeyko,et al.  What drives orogeny in the Andes , 2005 .

[88]  C. McCammon The Paradox of Mantle Redox , 2005, Science.

[89]  J. Ali,et al.  Neotethys and the India–Asia collision: Insights from a palaeomagnetic study of the Dazhuqu ophiolite, southern Tibet , 2005 .

[90]  A. Crawford,et al.  Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics , 2005 .

[91]  M. Doin,et al.  Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics , 2005 .

[92]  Chengshan Wang,et al.  Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet , 2005 .

[93]  C. Guilmette Petrology, geochemistry and geochronology of highly foliated amphibolites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet : geodynamical implications , 2005 .

[94]  A. Hofmann,et al.  Chronology, petrology and isotope geochemistry of the Erro-Tobbio peridotites (Ligurian Alps, Italy): Records of Late Palaeozoic lithospheric extension , 2004 .

[95]  J. Malpas,et al.  REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet , 2004 .

[96]  J. Cuevas,et al.  Tectonic evidence in the Ronda peridotites, Spain, for mantle diapirism related to delamination , 2004 .

[97]  W. Griffin,et al.  Lithosphere evolution beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived peridotites , 2004 .

[98]  Conny Bockrath,et al.  Stabilities of laurite RuS2 and monosulfide liquid solution at magmatic temperature , 2004 .

[99]  T. Kawamoto Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions , 2004 .

[100]  D. Rubie,et al.  Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle , 2004, Nature.

[101]  J. Malpas,et al.  Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications , 2004, Geological Society, London, Special Publications.

[102]  J. Malpas,et al.  Aspects of the Tectonic Evolution of China , 2004 .

[103]  P. Robinson,et al.  Ophiolites in Earth History , 2004 .

[104]  H. Mao,et al.  Natural occurrence and synthesis of two new postspinel polymorphs of chromite , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[105]  J. Aitchison,et al.  Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung–Tsangpo suture zone, Tibet , 2003, Journal of the Geological Society.

[106]  G. L. Farmer,et al.  How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States , 2003 .

[107]  T. Zhao,et al.  Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet , 2003 .

[108]  T. Morishita,et al.  Evolution of spinel–pyroxene symplectite in spinel–lherzolites from the Horoman Complex, Japan , 2003 .

[109]  J. Ali,et al.  Stratigraphic and sedimentological constraints on the age and tectonic evolution of the Neotethyan ophiolites along the Yarlung Tsangpo suture zone, Tibet , 2003, Geological Society, London, Special Publications.

[110]  Chengshan Wang,et al.  Yarlung Zangbo ophiolites (Southern Tibet) revisited: geodynamic implications from the mineral record , 2003, Geological Society, London, Special Publications.

[111]  John Malpas,et al.  Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet , 2003, Geological Society, London, Special Publications.

[112]  J. Morgan,et al.  Comparative 187Re-187Os systematics of chondrites: Implications regarding early solar system processes , 2002 .

[113]  T. Harrison,et al.  The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung–Tsangpo suture zone, southeastern Tibet , 2002 .

[114]  J. Ali,et al.  New insights into the evolution of the Yarlung Tsangpo suture zone, Xizang (Tibet), China , 2002 .

[115]  J. Mahoney,et al.  Geochronology and Nd and Pb isotope characteristics of gabbro dikes in the Luobusha ophiolite, Tibet , 2002 .

[116]  A. Deschamps,et al.  Arc-continent collision in Taiwan: New marine observations and tectonic evolution , 2002 .

[117]  J. Brenan,et al.  HIGH-TEMPERATURE STABILITY OF LAURITE AND Ru–Os–Ir ALLOY AND THEIR ROLE IN PGE FRACTIONATION IN MAFIC MAGMAS , 2001 .

[118]  Zhang Zhongming,et al.  Study of Diamonds from Chromitites in the Luobusa Ophiolite, Tibet , 2001 .

[119]  N. Takahashi ORIGIN OF PLAGIOCLASE LHERZOLITE FROM THE NIKANBETSU PERIDOTITE COMPLEX, HOKKAIDO, NORTHERN JAPAN , 1999 .

[120]  T. Harrison,et al.  The Zedong Window: A record of superposed Tertiary convergence in southeastern Tibet , 2000 .

[121]  Y. Dilek,et al.  Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of models of forearc ophiolite genesis , 2000 .

[122]  K. P. Gupta The Co-Mn-Ni (Cobalt-Manganese-Nickel) system , 1999 .

[123]  J. Melgarejo,et al.  Al- and Cr-rich chromitites from the Mayari-Baracoa ophiolitic belt (eastern Cuba); consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle , 1999 .

[124]  L. Stixrude,et al.  Normal and inverse ringwoodite at high pressures , 1999 .

[125]  C. Agee PHASE TRANSFORMATIONS AND SEISMIC STRUCTURE IN THE UPPER MANTLE AND TRANSITION ZONE , 1998 .

[126]  R. Walker,et al.  THE Re-Os ISOTOPE SYSTEM IN COSMOCHEMISTRY AND HIGH-TEMPERATURE GEOCHEMISTRY , 1998 .

[127]  I. Jackson The Earth's Mantle: Composition, Structure, and Evolution , 1998 .

[128]  D. Green,et al.  The Earth's Mantle: Pyrolite: A Ringwood Concept and Its Current Expression , 1998 .

[129]  F. Melcher,et al.  Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan: a Study of Solid and Fluid Inclusions in Chromite , 1997 .

[130]  X. Wang,et al.  Did the Indo-Asian collision alone create the Tibetan plateau? , 1997 .

[131]  I. Metcalfe Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys∗ , 1996 .

[132]  M. Manga Mixing of heterogeneities in the mantle: Effect of viscosity differences , 1996 .

[133]  J. Malpas,et al.  Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle , 1996 .

[134]  J. Platt,et al.  Late orogenic extension of the Betic Cordillera and the Alboran Domain: A lithospheric view , 1995 .

[135]  P. Ulmer,et al.  Serpentine Stability to Mantle Depths and Subduction-Related Magmatism , 1995, Science.

[136]  S. Haggerty,et al.  Symplectites in upper mantle peridotites: Development and implications for the growth of subsolidus garnet, pyroxene and spinel , 1994 .

[137]  P. Robinson,et al.  Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet , 1993 .

[138]  P. H. Nixon,et al.  Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera Peridotite Massif, North Morocco , 1993 .

[139]  C. Herzberg Depth and degree of melting of komatiites , 1992 .

[140]  V. Sautter,et al.  Ultradeep (>300 Kilometers) Ultramafic Xenoliths: Petrological Evidence from the Transition Zone , 1991, Science.

[141]  V. Sautter,et al.  Ultradeep (Greater Than 300 Kilometers), Ultramafic Upper Mantle Xenoliths , 1990, Science.

[142]  J. Malpas,et al.  Radiolarian biostratigraphy of supra-ophiolite sequences in the Xigaze area, Yarlung-Tsangpo suture, Southern Tibet (preliminary report) , 1989 .

[143]  J. Pearce,et al.  The ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986) , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[144]  岩生 周一 Ophiolites of the Yarlung Zangbo (Tsangbo) River,Xizang (Tibet) Wang Xibin(王希斌),Bao Peisheng(鮑佩声),Xiao Xuchang(肖序常) , 1988 .

[145]  J. Girardeau,et al.  Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): constraints for mantle structure beneath slow-spreading ridges , 1988 .

[146]  Manabu Kato,et al.  A dense polymorph of Ca3(PO4)2: a high pressure phase of apatite decomposition and its geochemical significance , 1986 .

[147]  J. Girardeau,et al.  Petrology of the mafic rocks of the Xigaze ophiolite, Tibet , 1985 .

[148]  T. Irifune Experimental Study of the System Mg3Al2Si3O12-Mg3Cr2Si3O12 at High Pressure and High Temperature , 1985 .

[149]  J. Girardeau,et al.  Structure of the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, southern Tibet, China: Genetic implications , 1985 .

[150]  C. Allègre,et al.  Lead isotopic study of the Xigaze ophiolite (Tibet): the problem of the relationship between magmatites (gabbros, dolerites, lavas) and tectonites (harzburgites) , 1984 .

[151]  J. Marcoux,et al.  Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet , 1984, Nature.

[152]  A. Navrotsky,et al.  Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution , 2004 .

[153]  B. Dupré,et al.  The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere , 1981, Nature.

[154]  Lin-Gin Liu High-pressure phase transformations in baddeleyite and zircon, with geophysical implications , 1979 .

[155]  Douglas Smith The Origin and Interpretation of Spinel-Pyroxene Clusters in Peridotite , 1977, The Journal of Geology.

[156]  D. Baltimore Is terminal deoxynucleotidyl transferase a somatic mutagen in lymphocytes? , 1974, Nature.

[157]  A. E. Ringwood,et al.  Newly observed high pressure transformations in Mn3O4, CaAl2O4, and ZrSiO4 , 1969 .