Photophysics of Bis(thiocyanato)gold(I) Complexes: Intriguing Structure−Luminescence Relationships

The electronic structure of bis(thiocyanato)gold(I) complexes is studied both experimentally and theoretically. Temperature-dependent photoluminescence studies for K[Au(SCN)2] reveal two unstructured luminescence bands:  a strong green phosphorescence band (τ77K = 45.4 μs) and a weak blue fluorescence band (τ77K = 24.4 ns) that becomes well-resolved by cooling toward 4 K or by time-resolved measurements, representing a rare case for Au(I) compounds whereby both fluorescence and phosphorescence are observed simultaneously. Quantum mechanical calculations for dimeric models indicate Au−Au covalent bond formation in the T1 lowest triplet excited state (2.62 A; υAu-Au = 180 cm-1), compared to corresponding values of 2.95 A and 84 cm-1, respectively, for the aurophilically bound S0 ground state. Intriguing structure−luminescence relations exist for bis(thiocyanato)gold(I) complexes with different cations such as K+, Rb+, n-Bu4N+, and Cs+ in which the salts with shorter Au···Au nearest-neighbor separations show...

[1]  J. Stephen Binkley,et al.  Theoretical models incorporating electron correlation , 2009 .

[2]  H. Patterson,et al.  Optical memory and multistep luminescence thermochromism in single crystals of K2Na[Ag(CN)2]3. , 2007, Inorganic chemistry.

[3]  A Janner,et al.  Towards a classification of icosahedral viruses in terms of indexed polyhedra. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[4]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[5]  Vilma R. Bojan,et al.  Phosphorescent excited state of [Au2[(Ph2Sb)2O]3]2+: Jahn-Teller distortion at only one gold(I) center. , 2005, Journal of the American Chemical Society.

[6]  J. Fettinger,et al.  A reversible polymorphic phase change which affects the luminescence and aurophilic interactions in the gold (I) cluster complex, [mu3-S(AuCNC7H13)3](SbF6). , 2005, Journal of the American Chemical Society.

[7]  A. Kovalevsky,et al.  Shedding light on the structure of a photoinduced transient excimer by time-resolved diffraction. , 2005, Physical review letters.

[8]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[9]  Biwu Ma,et al.  Synthetic control of Pt...Pt separation and photophysics of binuclear platinum complexes. , 2005, Journal of the American Chemical Society.

[10]  P. Bagus,et al.  Electronic structure of mercury oligomers and exciplexes: models for long-range/multicenter bonding in phosphorescent transition-metal compounds. , 2005, The journal of physical chemistry. A.

[11]  F. Ames,et al.  "Safe" Coulomb excitation of 30Mg. , 2004, Physical review letters.

[12]  M. Omary,et al.  Anomalous structure-luminescence relationship in phosphorescent gold(I) isonitrile neutral complexes. , 2004, Dalton transactions.

[13]  C. Che,et al.  Structural and spectroscopic studies on Pt.Pt and pi-pi interactions in luminescent multinuclear cyclometalated platinum(II) homologues tethered by oligophosphine auxiliaries. , 2004, Journal of the American Chemical Society.

[14]  R. C. Elder,et al.  Emission energy correlates with inverse of gold-gold distance for various [Au(SCN)2]- salts. , 2004, Journal of the American Chemical Society.

[15]  C. Che,et al.  Luminescent cyclometalated diimine platinum(II) complexes: Photophysical studies and applications , 2004 .

[16]  Hartmut Yersin,et al.  Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties , 2004 .

[17]  H. Patterson,et al.  “Write/Read/Erase” with Laser Irradiation of Dicyanoargentate(I) Doped and Pure Crystals , 2003 .

[18]  T. Cundari,et al.  Jahn-Teller distortion in the phosphorescent excited state of three-coordinate Au(I) phosphine complexes. , 2003, Journal of the American Chemical Society.

[19]  R. White-Morris,et al.  Orange luminescence and structural properties of three isostructural halocyclohexylisonitrilegold(I) complexes. , 2003, Inorganic chemistry.

[20]  Richard Eisenberg,et al.  Luminescence tribochromism and bright emission in gold(I) thiouracilate complexes. , 2003, Journal of the American Chemical Society.

[21]  Philip Coppens,et al.  Theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4- ion and comparison with time-resolved X-ray and spectroscopic results. , 2003, Journal of the American Chemical Society.

[22]  Zerihun Assefa,et al.  Syntheses, structure, and photoluminescence properties of the 1-dimensional chain compounds [(TPA)(2)Au][Au(CN)(2)] and (TPA)AuCl (TPA = 1,3,5-triaza-7-phosphaadamantane). , 2002, Inorganic chemistry.

[23]  C. Tripp,et al.  Spectroscopic Studies of "Exciplex Tuning" for Dicyanoaurate(I) Ions Doped in Potassium Chloride Crystals , 2002 .

[24]  R. Eisenberg,et al.  Multiple emissions and brilliant white luminescence from gold(I) O,O'-di(alkyl)dithiophosphate dimers. , 2002, Journal of the American Chemical Society.

[25]  C. Che,et al.  Aurophilic attraction and luminescence of binuclear gold(I) complexes with bridging phosphine ligands: ab initio study. , 2001, Chemistry.

[26]  H. Patterson,et al.  Excited-state interactions for [Au(CN)(2)(-)](n) and [Ag(CN)(2)(-)](n) oligomers in solution. Formation of luminescent gold-gold bonded excimers and exciplexes. , 2001, Journal of the American Chemical Society.

[27]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[28]  D Murphy,et al.  Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. , 2001, Journal of the American Chemical Society.

[29]  M. Hargittai,et al.  Molecular Structure, Bonding, and Jahn−Teller Effect in Gold Chlorides: Quantum Chemical Study of AuCl3, Au2Cl6, AuCl4-, AuCl, and Au2Cl2 and Electron Diffraction Study of Au2Cl6 , 2001 .

[30]  P. Andrews,et al.  Crystal structures of (R,R)-{[Ph(Me)CH]2NLi·pmdeta} and {[PhC(CH2)NH]Na·pmdeta}2: alkali metal amides derived from (R,R)-bis(α-methylbenzyl)amine , 2001 .

[31]  Mohammad A. Omary,et al.  Luminescence Thermochromism in Dicyanoargentate(I) Ions Doped in Alkali Halide Crystals , 2000 .

[32]  V. Miskowski,et al.  The Intrinsic 3[dσ*pσ] Emission of Binuclear Gold(I) Complexes with Two Bridging Diphosphane Ligands Lies in the Near UV; Emissions in the Visible Region Are Due to Exciplexes , 1999 .

[33]  Hsiu-Yi Chao,et al.  High Luminescence Gold(I) and Copper(I) Complexes with a Triplet Excited State for Use in Light‐Emitting Diodes , 1999 .

[34]  H. Patterson,et al.  Luminescent Homoatomic Exciplexes in Dicyanoargentate(I) Ions Doped in Alkali Halide Crystals. 2. "Exciplex Tuning" by Varying the Dopant Concentration † , 1999 .

[35]  Yuguang Ma,et al.  TRIPLET LUMINESCENT DINUCLEAR-GOLD(I) COMPLEX-BASED LIGHT-EMITTING DIODES WITH LOW TURN-ON VOLTAGE , 1999 .

[36]  Vivian Wing-Wah Yam,et al.  Luminescent polynuclear d10 metal complexes , 1999 .

[37]  Vivian Wing-Wah Yam,et al.  Proof of Potassium Ions by Luminescence Signaling Based on Weak Gold-Gold Interactions in Dinuclear Gold(I) Complexes. , 1998, Angewandte Chemie.

[38]  Mohammad A. Omary,et al.  LUMINESCENT HOMOATOMIC EXCIPLEXES IN DICYANOARGENTATE(I) IONS DOPED IN ALKALI HALIDE CRYSTALS. 1. EXCIPLEX TUNING BY SITE-SELECTIVE EXCITATION , 1998 .

[39]  A. Balch,et al.  GLOWING GOLD RINGS : SOLVOLUMINESCENCE FROM PLANAR TRIGOLD(I) COMPLEXES , 1998 .

[40]  Richard Eisenberg,et al.  Linear Chain Au(I) Dimer Compounds as Environmental Sensors: A Luminescent Switch for the Detection of Volatile Organic Compounds , 1998 .

[41]  Andrew Mills,et al.  Use of luminescent gold compounds in the design of thin-film oxygen sensors , 1997 .

[42]  A. Balch,et al.  Solvent‐Stimulated Luminescence from the Supramolecular Aggregation of a Trinuclear Gold(I) Complex that Displays Extensive Intermolecular AuċAu Interactions , 1997 .

[43]  Pekka Pyykkö,et al.  Strong Closed-Shell Interactions in Inorganic Chemistry. , 1997, Chemical reviews.

[44]  Z. Assefa,et al.  Syntheses, Structures, and Spectroscopic Properties of Gold(I) Complexes of 1,3,5-Triaza-7-phosphaadamantane (TPA). Correlation of the Supramolecular Au.cntdot. .cntdot. .cntdot.Au Interaction and Photoluminescence for the Species (TPA)AuCl and [(TPA-HCl)AuCl] , 1995 .

[45]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[46]  G. Desiraju,et al.  Database analysis of Au ⋯ Au interactions , 1993 .

[47]  N. Handy,et al.  Gradient theory applied to restricted (open-shell) Møller—Plesset theory , 1992 .

[48]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[49]  H. Yersin,et al.  Spectroscopic Properties of the Quasi One-Dimensional Tetracyanoplatinate(II) Compounds , 1985 .

[50]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[51]  H. Yersin,et al.  SPECTROSCOPIC STUDIES OF Mx[Pt(CN)4] · yH2O * , 1978 .

[52]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[53]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[54]  J. L. Dunham The Energy Levels of a Rotating Vibrator , 1932 .