Complexes of the Bis(di-tert -butyl-aniline)amine Pincer Ligand: The Case of Copper

TheN,N-bis(2-amino-3,5-di-tert-butylphenyl)amine pincer ligand was coordinated to copper. Depending on the copper source, a mononuclear complex1(+)or a trimer2could be isolated and were structurally characterized. Complex1(+)consists of two deprotonated iminobenzoquinone ligands coordinated to a Cu(I) center. Complex2is trinuclear with a (3:3) (M:L) stoichiometry, featuring a three-fold repetition of a unit made of a Cu(II) center coordinated to a tridentate ligand radical-dianion. In2, the metal ions are bridged by an anilido nitrogen. The coordination sphere of each copper is completed to four by a neighboring iminosemiquinone moiety. Complex1(+)belongs to an electron-transfer series. The paramagnetic complexes1and1(2+)were generated and characterized by EPR and Vis-NIR spectroscopy. Complex1exhibits an isotropic resonance at g = 2.00, which is reminiscent of Cu(I) iminosemiquinone species. The dication1(2+)exhibits a metal-based ground spin state and hence is described as a Cu(II) iminobenzoquinone complex. Both1and1(+)show a NIR band (954, 980 nm) of high intensity (> 20 mm(-1) cm(-1)) assigned to ligand-based charge transfer transitions. Two-electron reduction of1produces2via ligand release and disproportionation. Conversely, oxidation of2affords1(+). Finally, carbon-nanotube-supported complex2is active towards electrocatalytic reduction of H2O2.

[1]  S. Shaw,et al.  The Influence of Redox-Innocent Donor Groups in Tetradentate Ligands Derived from o-Phenylenediamine: Electronic Structure Investigations with Nickel. , 2019, Inorganic chemistry.

[2]  S. Cosnier,et al.  A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells , 2019, Joule.

[3]  C. Philouze,et al.  Structural snapshots of the rearrangement of the bis(di-tert-butyl-aminophenyl)amine pincer ligand in the presence of transition metal ions. , 2018, Dalton transactions.

[4]  T. Harris,et al.  A Ferric Semiquinoid Single-Chain Magnet via Thermally-Switchable Metal-Ligand Electron Transfer. , 2018, Journal of the American Chemical Society.

[5]  C. Philouze,et al.  Coordination Chemistry of the Redox Non‐Innocent Ligand Bis(2‐amino‐3,5‐di‐tert‐butylphenyl)amine with Group 10 Metal Ions (Ni, Pd, Pt) , 2018 .

[6]  M. Orio,et al.  Circumventing Intrinsic Metal Reactivity: Radical Generation with Redox-Active Ligands. , 2017, Chemistry.

[7]  J. Worrall,et al.  Tyrosine or Tryptophan? Modifying a Metalloradical Catalytic Site by Removal of the Cys-Tyr Cross-Link in the Galactose 6-Oxidase Homologue GlxA. , 2017, Angewandte Chemie.

[8]  C. Philouze,et al.  Mn(iv) and Mn(v)-radical species supported by the redox non-innocent bis(2-amino-3,5-di-tert-butylphenyl)amine pincer ligand. , 2017, Chemical communications.

[9]  E. Reisner,et al.  High Performance Reduction of H2O2 with an Electron Transport Decaheme Cytochrome on a Porous ITO Electrode , 2017, Journal of the American Chemical Society.

[10]  R. V. Van Duyne,et al.  Solid-State Redox Switching of Magnetic Exchange and Electronic Conductivity in a Benzoquinoid-Bridged Mn(II) Chain Compound. , 2016, Journal of the American Chemical Society.

[11]  C. Philouze,et al.  Electrocatalytic O2 Reduction at a Bio-inspired Mononuclear Copper Phenolato Complex Immobilized on a Carbon Nanotube Electrode. , 2016, Angewandte Chemie.

[12]  C. Philouze,et al.  Geometric and Electronic Structures of Nickel(II) Complexes of Redox Noninnocent Tetradentate Phenylenediamine Ligands. , 2016, Inorganic chemistry.

[13]  B. Henrissat,et al.  Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family , 2015, Nature Communications.

[14]  Daniël L J Broere,et al.  New avenues for ligand-mediated processes--expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands. , 2015, Chemical Society reviews.

[15]  A. Piskunov,et al.  Photovoltaic properties of Zn, Al, La, Sm, and Yb complexes with o-iminobenzoquinone ligands , 2015, Nanotechnologies in Russia.

[16]  S. Cosnier,et al.  Biomimetic versus enzymatic high-potential electrocatalytic reduction of hydrogen peroxide on a functionalized carbon nanotube electrode , 2015, Chemical science.

[17]  J. Long,et al.  Radical ligand-containing single-molecule magnets , 2015 .

[18]  N. Hakulinen,et al.  Three-dimensional structures of laccases , 2015, Cellular and Molecular Life Sciences.

[19]  S. Cosnier,et al.  Non-covalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes. , 2014, Journal of materials chemistry. B.

[20]  C. Philouze,et al.  Unprecedented redox-driven ligand ejection in nickel(II)-diiminosemiquinonate radical complexes. , 2014, Chemical communications.

[21]  S. Mendes,et al.  Robust spin crossover platforms with synchronized spin switch and polymer phase transition , 2013, Scientific Reports.

[22]  Ryan A. Zarkesh,et al.  Disulfide reductive elimination from an iron(III) complex , 2013 .

[23]  R. Crabtree,et al.  Redox-active ligands in catalysis. , 2013, Chemical Society reviews.

[24]  J. Ziller,et al.  Synthesis and characterization of a neutral titanium tris(iminosemiquinone) complex featuring redox-active ligands. , 2012, Inorganic chemistry.

[25]  A. F. Heyduk,et al.  Aluminum complexes of the redox-active [ONO] pincer ligand. , 2012, Dalton Transactions.

[26]  A. F. Heyduk,et al.  Coordination effects on electron distributions for rhodium complexes of the redox-active bis(3,5-di-tert-butyl-2-phenolate)amide ligand. , 2012, Inorganic chemistry.

[27]  A. Piskunov,et al.  Group II metal complexes with the N-(2-oxy-3,5-di-tert-butylphenyl)-4,6-di-tert-butyl-o-iminobenzoquinone ligand: an ESR study , 2011 .

[28]  S. Fukuzumi,et al.  Protonated iron–phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions , 2011 .

[29]  A. Piskunov,et al.  Complexes of the 14th group elements with tridentate redox-active ligand , 2010 .

[30]  Karl Wieghardt,et al.  Radical Ligands Confer Nobility on Base-Metal Catalysts , 2010, Science.

[31]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[32]  F. Thomas Ten years of a biomimetic approach to the copper(II) radical site of Galactose oxidase , 2007 .

[33]  D. Powell,et al.  Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. , 2007, Dalton transactions.

[34]  D. Dooley,et al.  Structure of the oxidized active site of galactose oxidase from realistic in silico models. , 2006, Journal of the American Chemical Society.

[35]  F. Neese,et al.  Molecular and electronic structures of tetrahedral complexes of nickel and cobalt containing N,N'-disubstituted, bulky o-diiminobenzosemiquinonate(1-) π-radical ligands , 2006 .

[36]  Frank Neese,et al.  A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry , 2006, JBIC Journal of Biological Inorganic Chemistry.

[37]  K. Wieghardt,et al.  Molecular and Electronic Structure of Five-Coordinate Complexes of Iron(II/III) Containing o-Diiminobenzosemiquinonate(1−) π Radical Ligands , 2005 .

[38]  T. Schleid,et al.  Dreispinsystem mit neuer Wendung: ein Bis(semichinonato)kupfer‐Komplex mit nichtplanarer Konfiguration am Kupfer(II)‐Zentrum , 2005 .

[39]  W. Kaim,et al.  Three-spin system with a twist: a bis(semiquinonato)copper complex with a nonplanar configuration at the copper(II) center. , 2005, Angewandte Chemie.

[40]  C. Philouze,et al.  An unprecedented bridging phenoxyl radical in dicopper(II) complexes: evidence for an s=3/2 spin state. , 2005, Angewandte Chemie.

[41]  F. Michel,et al.  Galactose oxidase models: solution chemistry, and phenoxyl radical generation mediated by the copper status. , 2004, Chemistry.

[42]  K. Wieghardt,et al.  Aerial oxidation of primary alcohols and amines catalyzed by Cu(II) complexes of 2,2'-selenobis(4,6-di-tert-butylphenol) providing [O,Se,O]-donor atoms. , 2004, Dalton transactions.

[43]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[44]  F. Neese,et al.  Molecular and electronic structures of bis-(o-diiminobenzosemiquinonato)metal(II) complexes (Ni, Pd, Pt), their monocations and -anions, and of dimeric dications containing weak metal-metal bonds. , 2003, Journal of the American Chemical Society.

[45]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[46]  J. W. Whittaker,et al.  Free radical catalysis by galactose oxidase. , 2003, Chemical reviews.

[47]  I. Gautier-Luneau,et al.  pH-controlled change of the metal coordination in a dicopper(II) complex of the ligand H-BPMP: crystal structures, magnetic properties, and catecholase activity. , 2000, Inorganic chemistry.

[48]  N. Furmanova,et al.  Crystal and molecular structures of a samarium complex with the 3,5-Di-tert-butyl-1,2-quinone-1-(2-hydroxy-3,5-Di-tert-butylphenyl)imine ligand , 2000 .

[49]  C. Rovira,et al.  Redox-tunable valence tautomerism in a cobalt Schiff base complex. , 2000, Inorganic chemistry.

[50]  K. Wieghardt,et al.  Ligand-Based Redox Isomers of [Zn(II)(C(28)H(40)NO(2))(2)]: Molecular and Electronic Structures of a Diamagnetic Green and a Paramagnetic Red Form. , 1999, Inorganic chemistry.

[51]  F. Martínez-Martínez,et al.  Syntheses and Characterization by NMR Spectroscopy and X-ray Diffraction of Complexes Derived from Metals of Groups 2 and 13 and the Ligand Bis(3,5-di-tert-butyl-1-hydroxy-2-phenyl)amine , 1999 .

[52]  K. Wieghardt,et al.  Aerobic Oxidation of Primary Alcohols by a New Mononuclear Cu(II) -Radical Catalyst. , 1999, Angewandte Chemie.

[53]  K. Wieghardt,et al.  AEROBE OXIDATION PRIMARER ALKOHOLE MIT EINEM NEUEN EINKERNIGEN CUII-RADIKAL-KATALYSATOR , 1999 .

[54]  D. G. Tuck,et al.  A complex of gallium with a Schiff base - bis(orthoquinone) ligand , 1999 .

[55]  K. Wieghardt,et al.  From Structural Models of Galactose Oxidase to Homogeneous Catalysis: Efficient Aerobic Oxidation of Alcohols. , 1998, Angewandte Chemie.

[56]  K. Wieghardt,et al.  Vom Strukturmodell der Galactose‐Oxidase zur homogenen Katalyse: effiziente aerobe Oxidation von Alkoholen , 1998 .

[57]  A. Whalen,et al.  Studies on Aerobic Reactions of Ammonia/3,5-Di-tert-butylcatechol Schiff-Base Condensation Products with Copper, Copper(I), and Copper(II). Strong Copper(II)−Radical Ferromagnetic Exchange and Observations on a Unique N−N Coupling Reaction , 1996 .

[58]  S. Peng,et al.  Synthesis and Crystal Structure of Metal Complexes of N‐phenyl‐o‐benzoquinonediimine (M = Ru2+, Co3+, Ni2+) , 1994 .

[59]  M. McPherson,et al.  Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase , 1994, Nature.

[60]  G. A. Petersson,et al.  A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms , 1991 .

[61]  C. Pierpont,et al.  Charge distribution in transition-metal complexes of a Schiff base biquinone ligand. Structural and electrochemical properties of the MII(Cat-N-BQ)2MIII(Cat-N-BQ)(Cat-N-SQ)MIV(Cat-N-SQ)2 tautomeric series , 1989 .

[62]  C. Pierpont,et al.  Cobalt and manganese complexes of a Schiff base biquinone radical ligand , 1988 .

[63]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[64]  A. Balch,et al.  Catechol oxidations. Characterization of metal complexes of 3,5-di-tert-butyl-1,2-quinone 1-(2-hydroxy-3,5-di-tert-butylphenyl)imine formed by the aerial oxidation of 3,5-di-tert-butylcatechol in the presence of ammonia and divalent metal ions , 1975 .

[65]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[66]  F. Neese,et al.  Molecular and electronic structure of four- and five-coordinate cobalt complexes containing two o-phenylenediamine- or two o-aminophenol-type ligands at various oxidation levels: an experimental, density functional, and correlated ab initio study. , 2004, Chemistry.

[67]  K. Kadish,et al.  Charge distribution in Schiff-base biquinone complexes. Electrochemical, spectroelectrochemical and electron spin resonance studies of complexes of CoIII, NiII, ZnII, CuII, and CdII with the N-(2′-hydroxy-3′,5′-di-t-butylphenyl)-4,6-di-t-butyl-o-benzoquinone imine ligand system in CH2Cl2 , 1990 .