Pattern recognition in field crickets: concepts and neural evidence

[1]  B. Hedwig,et al.  Auditory pattern recognition and steering in the cricket Teleogryllus oceanicus , 2014 .

[2]  A. Stumpner,et al.  Processing of model calling songs by the prothoracic AN2 neurone and phonotaxis are significantly correlated in individual female Gryllus bimaculatus , 2013 .

[3]  A. Stumpner,et al.  Processing of ultrasound in a bush cricket's brain , 2013 .

[4]  Jan Clemens,et al.  Computational principles underlying the recognition of acoustic signals in insects , 2013, Journal of Computational Neuroscience.

[5]  H Bullock Theodore,et al.  The Problem of Recognition in an Analyzer Made of Neurons , 2012 .

[6]  B. Hedwig,et al.  Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer) , 2012, Brain and behavior.

[7]  Nicholas J. Priebe,et al.  Mechanisms of Neuronal Computation in Mammalian Visual Cortex , 2012, Neuron.

[8]  B. Hedwig,et al.  Calling Song Recognition in Female Crickets: Temporal Tuning of Identified Brain Neurons Matches Behavior , 2012, The Journal of Neuroscience.

[9]  A. Stumpner,et al.  Response properties of the prothoracic AN2 auditory interneurone to model calling songs in the cricket Gryllus bimaculatus , 2011 .

[10]  B. Hedwig,et al.  Neural basis of singing in crickets: central pattern generation in abdominal ganglia , 2011, Naturwissenschaften.

[11]  B Hedwig,et al.  Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. , 2011, Journal of neurophysiology.

[12]  G. Rose,et al.  Counting on Inhibition and Rate-Dependent Excitation in the Auditory System , 2007, The Journal of Neuroscience.

[13]  Berthold Hedwig,et al.  Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets , 2006, Journal of Comparative Physiology A.

[14]  J. Schul,et al.  Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons , 2006, Journal of Comparative Physiology A.

[15]  Berthold Hedwig,et al.  The Cellular Basis of a Corollary Discharge , 2006, Science.

[16]  Berthold Hedwig,et al.  Auditory orientation in crickets: Pattern recognition controls reactive steering , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  B Hedwig,et al.  Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system , 2005, Journal of Experimental Biology.

[18]  Berthold Hedwig,et al.  Complex auditory behaviour emerges from simple reactive steering , 2004, Nature.

[19]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[20]  R. M. Hennig Acoustic feature extraction by cross-correlation in crickets? , 2003, Journal of Comparative Physiology A.

[21]  Edward W. Large,et al.  Auditory Temporal Computation: Interval Selectivity Based on Post-Inhibitory Rebound , 2002, Journal of Computational Neuroscience.

[22]  B. Ronacher,et al.  Effects of signal duration on the recognition of masked communication signals by the grasshopper Chorthippus biguttulus , 2000, Journal of Comparative Physiology A.

[23]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[24]  B Hedwig,et al.  Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. , 2000, Journal of neurophysiology.

[25]  D V Buonomano,et al.  Decoding Temporal Information: A Model Based on Short-Term Synaptic Plasticity , 2000, The Journal of Neuroscience.

[26]  Masakazu Konishi,et al.  Deciphering the Brain's Codes , 1999, Neural Computation.

[27]  J. D. Crawford,et al.  Feature-detecting auditory neurons in the brain of a sound-producing fish , 1997, Journal of Comparative Physiology A.

[28]  D. von Helversen,et al.  Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? , 1995, Journal of Comparative Physiology A.

[29]  M. Konishi,et al.  Axonal delay lines for time measurement in the owl's brainstem. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Hörner,et al.  The function of auditory neurons in cricket phonotaxis , 1988, Journal of Comparative Physiology A.

[31]  H. Markl Acoustic and vibrational communication in insects , 1985, Insectes Sociaux.

[32]  John A. Doherty,et al.  Trade-off phenomena in calling song recognition and phonotaxis in the cricket,Gryllus bimaculatus (Orthoptera, Gryllidae) , 1985, Journal of Comparative Physiology A.

[33]  A. Moiseff,et al.  Sensitivity to ultrasound in an identified auditory interneuron in the cricket: a possible neural link to phonotactic behavior , 1983, Journal of comparative physiology.

[34]  R. R. Capranica,et al.  Temporal selectivity in the central auditory system of the leopard frog. , 1983, Science.

[35]  Franz Huber,et al.  Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket,Gryllus campestris L. , 1982, Journal of comparative physiology.

[36]  G. Pollack,et al.  Temporal Pattern as a Cue for Species-Specific Calling Song Recognition in Crickets , 1979, Science.

[37]  Hoy Rr,et al.  Acoustic communication in crickets: a model system for the study of feature detection. , 1978 .

[38]  R R Hoy,et al.  Hybrid cricket auditory behavior: evidence for genetic coupling in animal communication. , 1977, Science.

[39]  R. D. Alexander,et al.  EVOLUTIONARY CHANGE IN CRICKET ACOUSTICAL COMMUNICATION , 1962 .

[40]  F. Huber CENTRAL NERVOUS CONTROL OF SOUND PRODUCTION IN CRICKETS AND SOME SPECULATIONS ON ITS EVOLUTION , 1962 .

[41]  P. Haskell Hearing in Certain Orthoptera , 1956 .

[42]  J. Regen Über die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens , 1913, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[43]  Marie Schmidt Cricket Behavior And Neurobiology , 2016 .

[44]  G. Rose,et al.  Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning , 2010, Journal of Comparative Physiology A.

[45]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[46]  K. Schildberger,et al.  Temporal selectivity of identified auditory neurons in the cricket brain , 2004, Journal of Comparative Physiology A.

[47]  Franz Huber,et al.  Auditory behavior of the cricket , 2004, Journal of comparative physiology.

[48]  D. Bentley Control of cricket song patterns by descending interneurons , 2004, Journal of comparative physiology.

[49]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[50]  M. Hörner,et al.  The function of auditory neurons in cricket phonotaxis , 2004, Journal of Comparative Physiology A.

[51]  John Thorson,et al.  Auditory behavior of the cricket , 2004, Journal of Comparative Physiology A.

[52]  K. Schildberger Recognition of temporal, patterns by identified auditory neurons in the cricket brain , 1985 .

[53]  R. Hoy Acoustic communication in crickets: a model system for the study of feature detection. , 1978, Federation proceedings.