Scattering of ultraviolet and photosynthetically active radiation by sorghum bicolor: influence of epicuticular wax
暂无分享,去创建一个
Richard H. Grant | R. H. Grant | E. Ashworth | M. Jenks | Matthew A. Jenks | Patrick J. Rich | Edward N. Ashworth | P. J. Peters | P. J. Rich | P. Peters
[1] T. Meyers,et al. Predicting Daily Insolation with Hourly Cloud Height and Coverage , 1983 .
[2] J. M. Norman,et al. Leaf Reflectance and Transmittance in Soybean and Corn , 1991 .
[3] Leonid Fukshansky,et al. Light — vegetation interaction: a new stochastic approach for description and classification , 1993 .
[4] E. Ashworth,et al. Epicuticular Wax Morphology of Bloomless (bm) Mutants in Sorghum bicolor , 1992, International Journal of Plant Sciences.
[5] D. M. Gates,et al. Spectral Properties of Plants , 1965 .
[6] D A Reicosky,et al. Physiological Effects of Surface Waxes: I. Light Reflectance for Glaucous and Nonglaucous Picea pungens. , 1978, Plant physiology.
[7] N. J. Chatterton,et al. PHOTOSYNTHESIS AND TRANSPIRATION OF BLOOM AND BLOOMLESS SORGHUM , 1975 .
[8] R. Desjardins,et al. Variations of crop canopy spectral reflectance measurements under changing sky conditions , 1985 .
[9] C. Daughtry. Direct measurements of canopy structure , 1990 .
[10] Abraham Blum,et al. A Rapid Colorimetric Method for Epicuticular Wax Contest of Sorghum Leaves 1 , 1977 .
[11] R. Richards,et al. Yield, Water Relations, Gas Exchange, and Surface Reflectances of Near‐Isogenic Wheat Lines Differing in Glaucousness1 , 1983 .
[12] K. H. Asay,et al. EPICUTICULAR WAX PRODUCTION, WATER STATUS AND LEAF TEMPERATURE IN TRITICEAE RANGE GRASSES OF CONTRASTING VISIBLE GLAUCOUSNESS , 1989 .
[13] H. Barber,et al. Studies on Leaf Characteristics of a Cline of Eucalyptus urnigera From Mount Wellington, Tasmania. II. Reflection, Transmission and Absorption of Radiation. , 1974 .
[14] W. D. Billings,et al. REFLECTION OF VISIBLE AND INFRARED RADIATION FROM LEAVES OF DIFFERENT ECOLOGICAL GROUPS , 1951 .
[15] F. Massey. The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .
[16] John L. Monteith,et al. Vegetation and the atmosphere , 1975 .
[17] R. H. Grant. Ultraviolet and photosynthetically active bands : plane surface irradiance at corn canopy base , 1991 .
[18] G. W. Burton,et al. Leaf Surface Effects on In Vitro Digestion and Transpiration in Isogenic Lines of Sorghum and Pearl Millet 1 , 1974 .
[19] Sasha Madronich,et al. UV radiation in the natural and perturbed atmosphere , 1993 .
[20] P. Shouse,et al. Environmental Physiology of Sorghum. II. Epicuticular Wax Load and Cuticular Transpiration1 , 1984 .
[21] O. Anisimov,et al. Stochastic radiation in macroheterogeneous random optical media , 1992 .
[22] Alex E. S. Green,et al. THE MIDDLE ULTRAVIOLET REACHING THE GROUND * , 1974 .
[23] Fred A. Kummerow,et al. A comparison of plant and grain wax from two varieties of sorghum , 1957 .
[24] M. Tevini. UV-B radiation and ozone depletion : effects on humans, animals, plants, microorganisms, and materials , 1993 .
[25] B. M. Eller. Die strahlungsökologische Bedeutung von Epidermisauflagen1)1)Herrn Professor Dr. Otto Stocker zum 90. Geburtstag gewidmet. , 1979 .
[26] Influence of Soybean Pubescence Type on Radiation Balance1 , 1984 .
[27] S. Ogata,et al. Relationship between Water use Efficiency and Cuticular Wax Deposition in Warm Season Forage Crops Grown under Water Deficit Conditions , 1987 .
[28] H. T. Breece Iii,et al. Bidirectional scattering characteristics of healthy green soybean and corn leaves in vivo. , 1971, Applied optics.