Handling Missing Values in terms of Rough Sets

Rough sets are applied to data tables containing missing values. Discernibility and indiscernibility of missing values are considered simultaneously. A family of possible equivalence classes is obtained, in which each equivalence class has the possibility that it is an actual one. By using the family of possible equivalence classes, we can derive lower and upper approximations, even if the approximations are not obtained by previous methods. Furthermore, the lower and upper approximations coincide with ones obtained from methods of possible worlds.

[1]  Jerzy W. Grzymala-Busse,et al.  Characteristic Relations for Incomplete Data: A Generalization of the Indiscernibility Relation , 2005, Trans. Rough Sets.

[2]  Hiroshi Sakai,et al.  Lower and Upper Approximations in Data Tables Containing Possibilistic Information , 2007, Trans. Rough Sets.

[3]  Salvatore Greco,et al.  Handling Missing Values in Rough Set Analysis of Multi-Attribute and Multi-Criteria Decision Problems , 1999, RSFDGrC.

[4]  Amihai Motro,et al.  Uncertainty Management in Information Systems: From Needs to Solution , 1996 .

[5]  Hiroshi Sakai,et al.  Rough Sets Handling Missing Values Probabilistically Interpreted , 2005, RSFDGrC.

[6]  Yanyong Guan,et al.  Set-valued information systems , 2006, Inf. Sci..

[7]  Jerzy Stefanowski,et al.  Rough classification in incomplete information systems , 1989 .

[8]  Hiroshi Sakai,et al.  An Application of Discernibility Functions to Generating Minimal Rules in Non-Deterministic Information Systems , 2006, J. Adv. Comput. Intell. Intell. Informatics.

[9]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[10]  Tomasz Imielinski,et al.  Incomplete Information in Relational Databases , 1984, JACM.

[11]  Hiroshi Sakai,et al.  Basic Algorithms and Tools for Rough Non-deterministic Information Analysis , 2004, Trans. Rough Sets.

[12]  Alain Pirotte,et al.  Imperfect Information in Relational Databases , 1996, Uncertainty Management in Information Systems.

[13]  Jerzy W. Grzymala-Busse,et al.  A Comparison of Several Approaches to Missing Attribute Values in Data Mining , 2000, Rough Sets and Current Trends in Computing.

[14]  Jerzy W. Grzymala-Busse,et al.  Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction , 2004, Trans. Rough Sets.

[15]  Alexis Tsoukiàs,et al.  Incomplete Information Tables and Rough Classification , 2001, Comput. Intell..

[16]  Simon Parsons,et al.  Addendum to "Current Approaches to Handling Imperfect Information in Data and Knowledge Bases" , 1996, IEEE Trans. Knowl. Data Eng..

[17]  Hiroshi Sakai,et al.  Applying Rough Sets to Data Tables Containing Possibilistic Information , 2006, RSKT.

[18]  Marzena Kryszkiewicz,et al.  Rough Set Approach to Incomplete Information Systems , 1998, Inf. Sci..

[19]  Ewa Orlowska,et al.  Representation of Nondeterministic Information , 1984, Theor. Comput. Sci..

[20]  Hiroshi Sakai Effective Procedures for Handling Possible Equivalence Relations in Non-deterministic Information Systems , 2001, Fundam. Informaticae.

[21]  Rafal Latkowski On Decomposition for Incomplete Data , 2003, Fundam. Informaticae.

[22]  Gösta Grahne,et al.  The Problem of Incomplete Information in Relational Databases , 1991, Lecture Notes in Computer Science.

[23]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[24]  Hiroshi Sakai,et al.  Applying Rough Sets to Information Tables Containing Probabilistic Values , 2007, MDAI.

[25]  Hiroshi Sakai,et al.  Checking Whether or Not Rough-Set-Based Methods to Incomplete Data Satisfy a Correctness Criterion , 2005, MDAI.

[26]  Hiroshi Sakai,et al.  Applying Rough Sets to Data Tables Containing Imprecise Information Under Probabilistic Interpretation , 2006, RSCTC.