Evidence for an Additional Symmetry Breaking from Direct Observation of Band Splitting in the Nematic State of FeSe Superconductor

Cong Li, Xianxin Wu, Le Wang, Defa Liu, Yongqing Cai, Yang Wang, Qiang Gao, Chunyao Song, Jianwei Huang, Chenxiao Dong, Jing Liu, Ping Ai, Hailan Luo, ChaoHui Yin, Guodong Liu, Yuan Huang, Qingyan Wang, Xiaowen Jia, Fengfeng Zhang, Shenjin Zhang, Feng Yang, Zhimin Wang, Qinjun Peng, Zuyan Xu, Youguo Shi, Jiangping Hu, Tao Xiang, Lin Zhao1,∗ and X. J. Zhou1,2,7,8,∗ Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China University of Chinese Academy of Sciences, Beijing 100049, China Institute for Theoretical Physics and Astrophysics, Julius-Maximilians University of Wurzburg, Am Hubland, D-97074 Wurzburg, Germany Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany Military Transportation University, Tianjin 300161, China Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China Songshan Lake Materials Laboratory, Dongguan 523808, China Beijing Academy of Quantum Information Sciences, Beijing 100193, China Collaborative Innovation Center of Quantum Matter, Beijing 100190, China These people contributed equally to the present work. ∗Corresponding authors: lzhao@iphy.ac.cn and XJZhou@iphy.ac.cn

[1]  R. Birgeneau,et al.  Momentum Dependence of the Nematic Order Parameter in Iron-Based Superconductors. , 2019, Physical review letters.

[2]  Thomas Wolf,et al.  Calorimetric evidence of nodal gaps in the nematic superconductor FeSe , 2019, Physical Review B.

[3]  T. Shibauchi,et al.  Quantum Vortex Core and Missing Pseudogap in the Multiband BCS-BEC Crossover Superconductor FeSe. , 2019, Physical review letters.

[4]  D. Adroja,et al.  Evidence of nodal gap structure in the basal plane of the FeSe superconductor , 2018, Physical Review B.

[5]  C. Shang,et al.  Organic-ion-intercalated FeSe-based superconductors , 2018, Physical Review Materials.

[6]  Jian-Xin Zhu,et al.  Orbital-selective superconductivity in the nematic phase of FeSe , 2018, Physical Review B.

[7]  Timur K. Kim,et al.  Three-dimensional superconducting gap in FeSe from angle-resolved photoemission spectroscopy , 2018 .

[8]  B. Valenzuela,et al.  Nematic pairing from orbital-selective spin fluctuations in FeSe , 2018, npj Quantum Materials.

[9]  Xingjiang Zhou,et al.  New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review , 2018, Reports on progress in physics. Physical Society.

[10]  Timur K. Kim,et al.  Scaling of the superconducting gap with orbital character in FeSe , 2018, Physical Review B.

[11]  T. Xiang,et al.  Orbital Origin of Extremely Anisotropic Superconducting Gap in Nematic Phase of FeSe Superconductor , 2018, Physical Review X.

[12]  Jian Kang,et al.  Superconductivity in FeSe: The Role of Nematic Order. , 2018, Physical review letters.

[13]  Yuya Suzuki,et al.  Superconducting gap anisotropy sensitive to nematic domains in FeSe , 2018, Nature Communications.

[14]  Tao E. Li,et al.  Driving force of the orbital-relevant electronic nematicity in Fe-based superconductors , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Guanyu Chen,et al.  Highly anisotropic superconducting gaps and possible evidence of antiferromagnetic order in FeSe single crystals , 2017, 1703.08680.

[16]  A. Ino,et al.  Shifts and Splittings of the Hole Bands in the Nematic Phase of FeSe , 2017, 1702.05460.

[17]  P. Hirschfeld,et al.  Discovery of orbital-selective Cooper pairing in FeSe , 2016, Science.

[18]  Yicheng Wang,et al.  Tuning phase transitions in FeSe thin flakes by field-effect transistor with solid ion conductor as the gate dielectric , 2016, 1609.07726.

[19]  Lin Zhao,et al.  Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5 , 2016, Nature Communications.

[20]  AmirAHaghighirad,et al.  Electronic anisotropies revealed by detwinned angle-resolved photo-emission spectroscopy measurements of FeSe , 2017 .

[21]  P. Hirschfeld,et al.  Orbital selective pairing and gap structures of iron-based superconductors , 2016, 1611.02643.

[22]  P. Toulemonde,et al.  Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe , 2016, 1605.02482.

[23]  M. Abdel-Hafiez,et al.  Highly Anisotropic and Twofold Symmetric Superconducting Gap in Nematically Ordered FeSe_{0.93}S_{0.07}. , 2016, Physical review letters.

[24]  Timur K. Kim,et al.  Evidence for unidirectional nematic bond ordering in FeSe , 2016, 1603.04545.

[25]  Jiangping Hu,et al.  Nematic orders and nematicity-driven topological phase transition in FeSe , 2016, 1603.02055.

[26]  J. Q. Yan,et al.  Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe , 2015, Nature Communications.

[27]  J. Denlinger,et al.  Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal , 2015, Nature Communications.

[28]  X. H. Chen,et al.  Evolution of High-Temperature Superconductivity from a Low-T_{c} Phase Tuned by Carrier Concentration in FeSe Thin Flakes. , 2015, Physical review letters.

[29]  M. Sigrist,et al.  Evidence for time-reversal symmetry breaking of the superconducting state near twin-boundary interfaces in FeSe revealed by scanning tunneling spectroscopy. , 2015, 1504.02258.

[30]  M. Kuwata-Gonokami,et al.  Momentum-dependent sign inversion of orbital order in superconducting FeSe , 2015, 1504.00980.

[31]  T. Qian,et al.  Observation of two distinct dxz/dyz band splittings in FeSe , 2015, 1503.01390.

[32]  X. H. Chen,et al.  Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. , 2015, Nature materials.

[33]  A. Schofield,et al.  Dichotomy between the Hole and Electron Behavior in Multiband Superconductor FeSe Probed by Ultrahigh Magnetic Fields. , 2015, Physical review letters.

[34]  A. Schofield,et al.  Emergence of the nematic electronic state in FeSe , 2015, 1502.02917.

[35]  Tao E. Li,et al.  The form and origin of orbital ordering in the electronic nematic phase of iron-based superconductors , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  H. von Löhneysen,et al.  Field-induced superconducting phase of FeSe in the BCS-BEC cross-over , 2014, Proceedings of the National Academy of Sciences.

[37]  H. Löhneysen,et al.  Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe , 2014, 1407.1418.

[38]  R. Arita,et al.  Anomalous Fermi surface in FeSe seen by Shubnikov–de Haas oscillation measurements , 2014, 1405.7749.

[39]  Takashi Takahashi,et al.  Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor. , 2014, Physical review letters.

[40]  Z. K. Liu,et al.  Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 , 2013, Nature.

[41]  B. Buchner,et al.  Unusual band renormalization in the simplest iron-based superconductor FeSe 1 − x , 2013, 1307.1280.

[42]  Ln Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer , 2014 .

[43]  Y. Koike,et al.  New Li-Ethylenediamine-Intercalated Superconductor Li , 2013 .

[44]  Lin Zhao,et al.  Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. , 2012, Nature materials.

[45]  T. Wolf,et al.  Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe , 2013, 1303.2026.

[46]  Gang Wang,et al.  Superconducting phases in potassium-intercalated iron selenides. , 2013, Journal of the American Chemical Society.

[47]  T. Xiang,et al.  Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. , 2013, Nature materials.

[48]  V. Pomjakushin,et al.  Synthesis of a new alkali metal–organic solvent intercalated iron selenide superconductor with Tc ≈ 45 K , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  Lin Zhao,et al.  Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor , 2012, Nature Communications.

[50]  T. Ying,et al.  Observation of superconductivity at 30∼46K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu) , 2012, Scientific Reports.

[51]  Q. Xue,et al.  High temperature superconductivity in single unit-cell FeSe films on SrTiO$_{3}$ , 2014 .

[52]  Gang Wang,et al.  Superconductivity in the iron selenide KxFe2Se2 (0<= x<= 1) , 2010, 1012.2924.

[53]  Stephan Hüfner,et al.  Photoelectron Spectroscopy: Principles and Applications , 2010 .

[54]  Xiao-Liang Qi,et al.  Topological invariants for the Fermi surface of a time-reversal-invariant superconductor , 2010 .

[55]  *Contributed equally to the work , 2010 .

[56]  C. Felser,et al.  Electronic and magnetic phase diagram of beta-Fe(1.01)Se with superconductivity at 36.7 K under pressure. , 2009, Nature materials.

[57]  C. Felser,et al.  Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe(1.01)Se. , 2009, Physical review letters.

[58]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[59]  Guodong Liu,et al.  Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. , 2007, The Review of scientific instruments.