Autonomous Tuning and Charge-State Detection of Gate-Defined Quantum Dots

Defining quantum dots in semiconductor based heterostructures is an essential step in initializing solid-state qubits. With growing device complexity and increasing number of functional devices required for measurements, a manual approach to finding suitable gate voltages to confine electrons electrostatically is impractical. Here, we implement a two-stage device characterization and dot-tuning process which first determines whether devices are functional and then attempts to tune the functional devices to the single or double quantum dot regime. We show that automating well established manual tuning procedures and replacing the experimenter's decisions by supervised machine learning is sufficient to tune double quantum dots in multiple devices without pre-measured input or manual intervention. The quality of measurement results and charge states are assessed by four binary classifiers trained with experimental data, reflecting real device behaviour. We compare and optimize eight models and different data preprocessing techniques for each of the classifiers to achieve reliable autonomous tuning, an essential step towards scalable quantum systems in quantum dot based qubit architectures.

[1]  P. T. Eendebak,et al.  Computer-automated tuning of semiconductor double quantum dots into the single-electron regime , 2016, 1603.02274.

[2]  A. Chiesa,et al.  Quantum hardware simulating four-dimensional inelastic neutron scattering , 2018, Nature Physics.

[3]  Aravind Joshi,et al.  Proceedings of the 9th international joint conference on Artificial intelligence - Volume 2 , 1985 .

[4]  Jens Eisert,et al.  Reinforcement learning decoders for fault-tolerant quantum computation , 2018, Mach. Learn. Sci. Technol..

[5]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[6]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[7]  Jacob M. Taylor,et al.  Machine learning techniques for state recognition and auto-tuning in quantum dots , 2017, npj Quantum Information.

[8]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[9]  Yusuke Nomura,et al.  Constructing exact representations of quantum many-body systems with deep neural networks , 2018, Nature Communications.

[10]  Dino Sejdinovic,et al.  Quantum device fine-tuning using unsupervised embedding learning , 2020, New Journal of Physics.

[11]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[12]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[13]  A. Gossard,et al.  Quantum coherence in a one-electron semiconductor charge qubit. , 2010, Physical review letters.

[14]  D A Williams,et al.  Charge-qubit operation of an isolated double quantum dot. , 2005, Physical review letters.

[15]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[16]  J. Petta,et al.  Shuttling a single charge across a one-dimensional array of silicon quantum dots , 2018, Nature Communications.

[17]  C. Marcus,et al.  Fast charge sensing of Si/SiGe quantum dots via a high-frequency accumulation gate. , 2019, Nano letters.

[18]  Andreas D. Wieck,et al.  A machine learning approach for automated fine-tuning of semiconductor spin qubits , 2019, Applied Physics Letters.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[21]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[22]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[23]  Justyna P. Zwolak,et al.  QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments , 2018, PloS one.

[24]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[25]  D. Lachance-Quirion,et al.  Algorithm for automated tuning of a quantum dot into the single-electron regime , 2019, 1911.11651.

[26]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[27]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[28]  H. J. Mclaughlin,et al.  Learn , 2002 .

[29]  Werner Wegscheider,et al.  Automated Tuning of Double Quantum Dots into Specific Charge States Using Neural Networks , 2019 .

[30]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[31]  Igor Jex,et al.  Gaussian Boson sampling , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[32]  H. Lu,et al.  Frequency multiplexing for readout of spin qubits , 2013, 1312.5064.

[33]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[34]  S. Coppersmith,et al.  Achieving high-fidelity single-qubit gates in a strongly driven charge qubit with 1/f charge noise , 2018, npj Quantum Information.

[35]  Dieter Schuh,et al.  Tuning Methods for Semiconductor Spin Qubits , 2018, Physical Review Applied.

[36]  Nicolai Friis,et al.  Optimizing Quantum Error Correction Codes with Reinforcement Learning , 2018, Quantum.

[37]  Juin J. Liou,et al.  A review of recent MOSFET threshold voltage extraction methods , 2002, Microelectron. Reliab..

[38]  M. Manfra,et al.  Device Architecture for Coupling Spin Qubits via an Intermediate Quantum State , 2017, Physical Review Applied.

[39]  C. Gould,et al.  Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy , 2000 .

[40]  Dino Sejdinovic,et al.  Machine learning enables completely automatic tuning of a quantum device faster than human experts , 2020, Nature Communications.

[41]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[42]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[43]  L. Vandersypen,et al.  Automated tuning of inter-dot tunnel coupling in double quantum dots , 2018, Applied Physics Letters.

[44]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[45]  W. Marsden I and J , 2012 .

[46]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[47]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[48]  Andrew G. Glen,et al.  APPL , 2001 .

[49]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[50]  Haruna Chiroma,et al.  Machine learning for email spam filtering: review, approaches and open research problems , 2019, Heliyon.

[51]  A. R. Mills,et al.  Computer-automated tuning procedures for semiconductor quantum dot arrays , 2019, Applied Physics Letters.

[52]  Robert E. Schapire,et al.  A Brief Introduction to Boosting , 1999, IJCAI.

[53]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[54]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[55]  J. P. Dehollain,et al.  A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings , 2018, 1802.05446.

[56]  Michael A. Osborne,et al.  Efficiently measuring a quantum device using machine learning , 2018, npj Quantum Information.

[57]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[58]  R. Duncan,et al.  Dynamical mean field theory algorithm and experiment on quantum computers , 2019 .

[59]  E. R. MacQuarrie,et al.  Autotuning of double dot devices in situ with machine learning. , 2020, Physical review applied.