The mass function of dark matter haloes

We combine data from a number of N-body simulations to predict the abundance of dark haloes in cold dark matter (CDM) universes over more than four orders of magnitude in mass. A comparison of different simulations suggests that the dominant uncertainty in our results is systematic and is smaller than 10–30 per cent at all masses, depending on the halo definition used. In particular, our 'Hubble volume' simulations of τCDM and ΛCDM cosmologies allow the abundance of massive clusters to be predicted with uncertainties well below those expected in all currently planned observational surveys. We show that for a range of CDM cosmologies and for a suitable halo definition, the simulated mass function is almost independent of epoch, of cosmological parameters and of the initial power spectrum when expressed in appropriate variables. This universality is of exactly the kind predicted by the familiar Press–Schechter model, although this model predicts a mass function shape that differs from our numerical results, overestimating the abundance of 'typical' haloes and underestimating that of massive systems.

[1]  B. Lewis Face-on galaxies , 1984 .

[2]  J. Silk,et al.  Gravitational Magnification of the Cosmic Microwave Background , 1997, astro-ph/9708059.

[3]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[4]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[5]  K. Gorski,et al.  Cosmic Microwave Background Anisotropy in COBE DMR-normalized Open and Flat-Λ Cold Dark Matter Cosmogonies , 1995, astro-ph/9512157.

[6]  Jounghun Lee,et al.  The Cosmological Mass Distribution Function in the Zeldovich Approximation , 1997, astro-ph/9709200.

[7]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[8]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation , 1993 .

[9]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[10]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[11]  The cluster abundance in flat and open cosmologies , 1995, astro-ph/9511007.

[12]  C. Kochanek,et al.  Limits on Cosmological Models from Radio-selected Gravitational Lenses , 1997, astro-ph/9707032.

[13]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[14]  Properties of galaxy clusters: mass and correlation functions , 1998, astro-ph/9810189.

[15]  Xiaohui Fan,et al.  The Most Massive Distant Clusters: Determining Ω and σ8 , 1998, astro-ph/9803277.

[16]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[17]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[18]  The amplitude of mass fluctuations in the universe , 1993 .

[19]  J. Holtzman,et al.  Cold dark matter variant cosmological models — I. Simulations and preliminary comparisons , 1997, astro-ph/9712142.

[20]  S. Cole,et al.  Measuring Ω0 using cluster evolution , 1998 .

[21]  H. M. P. Couchman,et al.  Evolution of Structure in Cold Dark Matter Universes , 1997, astro-ph/9709010.

[22]  A Lagrangian dynamical theory for the mass function of cosmic structures — II. Statistics , 1996, astro-ph/9606029.

[23]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[24]  S. Burles,et al.  The Deuterium Abundance towards QSO 1009+2956 , 1997 .

[25]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[26]  Frazer R. Pearce,et al.  Clustering of galaxy clusters in cold dark matter universes: Clustering of galaxy clusters , 2002 .

[27]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[28]  Carlos S. Frenk,et al.  Gravitational clustering from scale-free initial conditions , 1988 .

[29]  Frazer R. Pearce,et al.  Clustering of galaxy clusters in CDM universes , 2000 .

[30]  J. Henry A Measurement of the Density Parameter Derived from the Evolution of Cluster X-Ray Temperatures , 1997 .

[31]  R. Bower The evolution of groups of galaxies in the Press-Schechter formalism , 1991 .

[32]  Measuring omega(0) using cluster evolution , 1998, astro-ph/9802350.

[33]  G. Tormen THE ASSEMBLY OF MATTER IN GALAXY CLUSTERS , 1998 .

[34]  Shaun Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994 .