Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study

Using density functional theory (DFT), we have investigated the structural and electronic properties of a prototype ZnO (6,0) zigzag single-walled nanotube (SWNT) with and without oxygen vacancy (VO), as well as its potential application as a sensor for gas molecules O2, H2, CO, NH3, and NO2. The DFT calculation shows that the defect-free ZnO (6,0) SWNT is semiconducting with a direct band gap larger than that of bulk ZnO. By introducing the VO defects, localized impurity states are induced above the valence band maximum while the Fermi level is lifted. As such, the defect-containing ZnO (6,0) SWNT becomes an n-type semiconductor. On the sidewall of a defect-free ZnO (6,0) SWNT, O2 and H2 molecules are physisorbed while CO, NH3, and NO2 are molecularly chemisorbed. With the VO defects, the binding interaction between gas molecules and the ZnO nanotube becomes stronger. The electron-donor molecules (CO and NH3) tend to enhance the concentration of major carriers (electrons), whereas the electron-acceptor m...

[1]  Jinlong Yang,et al.  Adsorption and Surface Reactivity on Single-Walled Boron Nitride Nanotubes Containing Stone−Wales Defects , 2007 .

[2]  Xiaoshuang Chen,et al.  First-principle study on bonding mechanism of ZnO by LDA + U method , 2007 .

[3]  Jinlong Yang,et al.  Electron-induced ferromagnetic ordering of Co-doped ZnO , 2007 .

[4]  Xiao Shen,et al.  Wire versus tube: stability of small one-dimensional ZnO nanostructures. , 2007, Nano letters.

[5]  C. N. R. Rao,et al.  Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides , 2007 .

[6]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[7]  Hailong Lu,et al.  Size Dependence of Gas Sensitivity of ZnO Nanorods , 2007 .

[8]  Christof Wöll,et al.  The chemistry and physics of zinc oxide surfaces , 2007 .

[9]  Xiao Wei Sun,et al.  Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications , 2006 .

[10]  X. W. Sun,et al.  Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition , 2006 .

[11]  D. Riley,et al.  Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. , 2006, The journal of physical chemistry. B.

[12]  Chen Yuping,et al.  Hydrothermal synthesis and gas sensing characters of ZnO nanorods , 2006 .

[13]  Caihong Wang,et al.  Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods , 2006 .

[14]  Jian Zhang,et al.  Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance , 2006 .

[15]  Z. C. Tu,et al.  Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes , 2005, cond-mat/0511274.

[16]  Xiaoping Zhou,et al.  Molten salt route toward the growth of ZnO nanowires in unusual growth directions. , 2005, The journal of physical chemistry. B.

[17]  Yanfa Yan,et al.  Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO ( 10 1 ¯ 0 ) surface , 2005 .

[18]  Zhe Wang,et al.  Peculiar ZnO nanopushpins and nanotubes synthesized via simple thermal evaporation , 2005 .

[19]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[20]  Z. Ye,et al.  Quasi-aligned ZnO nanotubes grown on Si substrates , 2005 .

[21]  S. Erkoç,et al.  Structural and electronic properties of single-wall ZnO nanotubes , 2005 .

[22]  Jenshan Lin,et al.  Hydrogen-selective sensing at room temperature with ZnO nanorods , 2005 .

[23]  Jiaqiang Xu,et al.  Gas sensing properties of ZnO nanorods prepared by hydrothermal method , 2005 .

[24]  Zhiyong Fan,et al.  Gate-refreshable nanowire chemical sensors , 2005 .

[25]  San-Yuan Chen,et al.  Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film/Si wafer in aqueous solutions , 2005 .

[26]  David P. Norton,et al.  Hydrogen and ozone gas sensing using multiple ZnO nanorods , 2005 .

[27]  Tiancheng Wang,et al.  Oxygen sensing characteristics of individual ZnO nanowire transistors , 2004 .

[28]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[29]  G. Henkelman,et al.  Comparison of methods for finding saddle points without knowledge of the final states. , 2004, The Journal of chemical physics.

[30]  Camilla Baratto,et al.  Low temperature selective NO2 sensors by nanostructured fibres of ZnO , 2004 .

[31]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[32]  Zhong Lin Wang,et al.  Metal−Semiconductor Zn−ZnO Core−Shell Nanobelts and Nanotubes , 2004 .

[33]  Yadong Li,et al.  Catalytic growth of ZnO nanotubes , 2003 .

[34]  Dapeng Yu,et al.  Fabrication and microstructure analysis on zinc oxide nanotubes , 2003 .

[35]  Kuei-Hsien Chen,et al.  Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes , 2002 .

[36]  A. Zunger,et al.  Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO , 2001 .

[37]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[38]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[39]  Qingyi Pan,et al.  Grain size control and gas sensing properties of ZnO gas sensor , 2000 .

[40]  B.Bhooloka Rao,et al.  Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour , 2000 .

[41]  Partha Mitra,et al.  Chemically deposited zinc oxide thin film gas sensor , 1999 .

[42]  G. Rao,et al.  Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature , 1999 .

[43]  Hong‐Ming Lin,et al.  Electrode effects on gas sensing properties of nanocrystalline zinc oxide , 1998 .

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  Giorgio Sberveglieri,et al.  Recent developments in semiconducting thin-film gas sensors , 1995 .

[46]  S. Wada,et al.  Gas-sensing properties of ultrathin zinc oxide films , 1993 .

[47]  T. Nenov,et al.  Ceramic sensor device materials , 1992 .

[48]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[49]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[50]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .