Scaling up classification rule induction through parallel processing

The fast increase in the size and number of databases demands data mining approaches that are scalable to large amounts of data. This has led to the exploration of parallel computing technologies in order to perform data mining tasks concurrently using several processors. Parallelization seems to be a natural and cost-effective way to scale up data mining technologies. One of the most important of these data mining technologies is the classification of newly recorded data. This paper surveys advances in parallelization in the field of classification rule induction.

[1]  Vlado Stankovski,et al.  Digging Deep into the Data Mine with DataMiningGrid , 2008, IEEE Internet Computing.

[2]  J. R. Quinlan Discovering rules by induction from large collections of examples Intro-ductory readings in expert s , 1979 .

[3]  Werner Dubitzky,et al.  Towards Data Warehousing and Mining of Protein Unfolding Simulation Data , 2005, Journal of Clinical Monitoring and Computing.

[4]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[5]  Max Bramer,et al.  An Information-Theoretic Approach to the Pre-pruning of Classification Rules , 2002, Intelligent Information Processing.

[6]  Mo Adda,et al.  J-PMCRI: A Methodology for Inducing Pre-pruned Modular Classification Rules , 2010, IFIP AI.

[7]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[8]  Werner Dubitzky,et al.  Grid warehousing of molecular dynamics protein unfolding data , 2005, CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, 2005..

[9]  Philip K. Chan,et al.  Advances in Distributed and Parallel Knowledge Discovery , 2000 .

[10]  Foster J. Provost,et al.  Scaling Up: Distributed Machine Learning with Cooperation , 1996, AAAI/IAAI, Vol. 1.

[11]  Johannes Fürnkranz,et al.  Integrative Windowing , 1998, J. Artif. Intell. Res..

[12]  Donald Michie,et al.  Expert systems in the micro-electronic age , 1979 .

[13]  Alex A. Freitas,et al.  A Survey of Parallel Data Mining , 1996 .

[14]  Rebecca Whitaker Msfc The Evolving Universe , 2008 .

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  Victor R. Lesser,et al.  The Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty , 1980, CSUR.

[17]  Rakesh Agrawal,et al.  SPRINT: A Scalable Parallel Classifier for Data Mining , 1996, VLDB.

[18]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[19]  Philip J. Stone,et al.  Experiments in induction , 1966 .

[20]  Foster Provost,et al.  Distributed Data Mining: Scaling up and beyond , 2000 .

[21]  David Windridge,et al.  NEW HORIZONS FROM MULTI-WAVELENGTH SKY SURVEYS , 1998 .

[22]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[23]  Max Bramer,et al.  Inducer: a public domain workbench for data mining , 2005, Int. J. Syst. Sci..

[24]  J. R. Quinlan,et al.  Induction over large data bases , 1979 .

[25]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[26]  Mo Adda,et al.  PMCRI: A Parallel Modular Classification Rule Induction Framework , 2009, MLDM.

[27]  Jason Catlett,et al.  Experiments on the Costs and Benefits of Windowing in ID3 , 1988, ML.

[28]  JoBea Way,et al.  The evolution of synthetic aperture radar systems and their progression to the EOS SAR , 1991, IEEE Trans. Geosci. Remote. Sens..

[29]  Rudi Studer,et al.  Intelligent Information Processing , 2002, IFIP — The International Federation for Information Processing.

[30]  Max Bramer,et al.  Artificial Intelligence in Theory and Practice II , 2009 .

[31]  Donald Hamilton,et al.  The evolving universe. Selected topics on large-scale structure and on the properties of galaxies , 1998 .

[32]  Ryszard S. Michalski,et al.  On the Quasi-Minimal Solution of the General Covering Problem , 1969 .

[33]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[34]  Vasant Honavar,et al.  Decision Tree Induction from Distributed Heterogeneous Autonomous Data Sources , 2003 .

[35]  Salvatore J. Stolfo,et al.  Experiments on multistrategy learning by meta-learning , 1993, CIKM '93.

[36]  Tim Oates,et al.  Efficient progressive sampling , 1999, KDD '99.

[37]  Mo Adda,et al.  Parallel Induction of Modular Classification Rules , 2008, SGAI Conf..

[38]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[39]  Jorma Rissanen,et al.  SLIQ: A Fast Scalable Classifier for Data Mining , 1996, EDBT.

[40]  Douglas H. Fisher,et al.  Modeling decision tree performance with the power law , 1999, AISTATS.

[41]  W. Daniel Hillis,et al.  Data parallel algorithms , 1986, CACM.

[42]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[43]  Mark R. Segal,et al.  Machine Learning Benchmarks and Random Forest Regression , 2004 .

[44]  Randy Kerber,et al.  ChiMerge: Discretization of Numeric Attributes , 1992, AAAI.

[45]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[46]  Frederic Theodor Stahl Parallel rule induction , 2009 .

[47]  James R. Goodman Reply to David R. Cheriton's, Pat Boyle's, and Gert A. Slavenburg's “Comments on 'Coherency for multiprocessor virtual addressed caches' by James R. Goodman” , 1988, CARN.

[48]  Padhraic Smyth,et al.  An Information Theoretic Approach to Rule Induction from Databases , 1992, IEEE Trans. Knowl. Data Eng..

[49]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[50]  Frans Coenen,et al.  Research and Development in Intelligent Systems XVI , 2000, Springer London.

[51]  Jadzia Cendrowska,et al.  PRISM: An Algorithm for Inducing Modular Rules , 1987, Int. J. Man Mach. Stud..

[52]  Daniel Golombek,et al.  New Horizons from Multi-Wavelength Sky Surveys , 1998 .

[53]  Foster J. Provost,et al.  Distributed Machine Learning: Scaling Up with Coarse-grained Parallelism , 1994, ISMB.

[54]  Daryl E. Hershberger,et al.  Collective Data Mining: a New Perspective toward Distributed Data Mining Advances in Distributed Data Mining Book , 1999 .

[55]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[56]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[57]  Byung-Hoon Park,et al.  Collective Data Mining: A New Perspective Toward Distributed Data Analysis , 1999 .

[58]  Hillol Kargupta,et al.  Distributed Data Mining: Algorithms, Systems, and Applications , 2003 .

[59]  Vipin Kumar,et al.  Parallel Formulations of Decision-Tree Classification Algorithms , 2004, Data Mining and Knowledge Discovery.

[60]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[61]  Vipin Kumar,et al.  ScalParC: a new scalable and efficient parallel classification algorithm for mining large datasets , 1998, Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing.

[62]  Mo Adda,et al.  Parallel Rule Induction with Information Theoretic Pre-Pruning , 2009, SGAI Conf..

[63]  Max Bramer,et al.  Automatic Induction of Classification Rules from Examples Using N-Prism , 2000 .