Within the Retinogeniculate Pathway Functional Consequences of Neuronal Divergence

[1]  Garrett B Stanley,et al.  Timing Precision in Population Coding of Natural Scenes in the Early Visual System , 2008, PLoS biology.

[2]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[3]  Matteo Carandini,et al.  Thalamic filtering of retinal spike trains by postsynaptic summation. , 2007, Journal of vision.

[4]  L. Palmer,et al.  Suppression at high spatial frequencies in the lateral geniculate nucleus of the cat. , 2007, Journal of neurophysiology.

[5]  J. Alonso,et al.  Adaptation to Stimulus Contrast and Correlations during Natural Visual Stimulation , 2007, Neuron.

[6]  T. Weyand,et al.  Retinogeniculate transmission in wakefulness. , 2007, Journal of neurophysiology.

[7]  P Heggelund,et al.  Changes in firing pattern of lateral geniculate neurons caused by membrane potential dependent modulation of retinal input through NMDA receptors , 2007, The Journal of physiology.

[8]  Lawrence C. Sincich,et al.  Transmission of Spike Trains at the Retinogeniculate Synapse , 2007, The Journal of Neuroscience.

[9]  Harvey A Swadlow,et al.  Brain state and contrast sensitivity in the awake visual thalamus , 2006, Nature Neuroscience.

[10]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[11]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[12]  R. Reid,et al.  Attention Modulates the Responses of Simple Cells in Monkey Primary Visual Cortex , 2005, The Journal of Neuroscience.

[13]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[14]  Chun-I Yeh,et al.  Receptive field size and response latency are correlated within the cat visual thalamus. , 2005, Journal of neurophysiology.

[15]  J. B. Demb,et al.  Contrast Adaptation in Subthreshold and Spiking Responses of Mammalian Y-Type Retinal Ganglion Cells , 2005, The Journal of Neuroscience.

[16]  L. Palmer,et al.  Contrast-dependent spatial summation in the lateral geniculate nucleus and retina of the cat. , 2004, Journal of neurophysiology.

[17]  J. Alonso,et al.  Two different types of Y cells in the cat lateral geniculate nucleus. , 2003, Journal of neurophysiology.

[18]  M. Bickford,et al.  Inhibitory circuitry involving Y cells and Y retinal terminals in the C laminae of the cat dorsal lateral geniculate nucleus , 2003, The Journal of comparative neurology.

[19]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[20]  A. B. Bonds,et al.  Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus) , 2002, Visual Neuroscience.

[21]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[22]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[23]  Stephane A. Roy,et al.  Coincidence Detection or Temporal Integration? What the Neurons in Somatosensory Cortex Are Doing , 2001, The Journal of Neuroscience.

[24]  M. H. Rowe,et al.  Dynamic properties of retino-geniculate synapses in the cat , 2001, Visual Neuroscience.

[25]  M. Bickford,et al.  Y retinal terminals contact interneurons in the cat dorsal lateral geniculate nucleus , 2001, The Journal of comparative neurology.

[26]  W. Regehr,et al.  Developmental Remodeling of the Retinogeniculate Synapse , 2000, Neuron.

[27]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[28]  D. Pollen,et al.  Striate cortex increases contrast gain of macaque LGN neurons , 2000, Visual Neuroscience.

[29]  R C Reid,et al.  Visual physiology of the lateral geniculate nucleus in two species of New World monkey: Saimiri sciureus and Aotus trivirgatis , 2000, The Journal of physiology.

[30]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[31]  A. L. Humphrey,et al.  Cell types and response timings in the medial interlaminar nucleus and C-layers of the cat lateral geniculate nucleus , 1999, Visual Neuroscience.

[32]  E. Callaway,et al.  Functional Streams and Local Connections of Layer 4C Neurons in Primary Visual Cortex of the Macaque Monkey , 1998, The Journal of Neuroscience.

[33]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[34]  M. Bickford,et al.  Neurofilament Proteins in Y-Cells of the Cat Lateral Geniculate Nucleus: Normal Expression and Alteration with Visual Deprivation , 1998, The Journal of Neuroscience.

[35]  L. Palmer,et al.  Temporal diversity in the lateral geniculate nucleus of cat , 1998, Visual Neuroscience.

[36]  Iman H. Brivanlou,et al.  Mechanisms of Concerted Firing among Retinal Ganglion Cells , 1998, Neuron.

[37]  R. Shapley,et al.  The use of m-sequences in the analysis of visual neurons: Linear receptive field properties , 1997, Visual Neuroscience.

[38]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[39]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[40]  D. Berson,et al.  Distribution and coverage of beta cells in the cat retina , 1996 .

[41]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[42]  P Heggelund,et al.  Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation. , 1994, Journal of neurophysiology.

[43]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[44]  Gregg E. Irvin,et al.  Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus , 1993, Visual Neuroscience.

[45]  R. Williams,et al.  Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  J. Malpeli,et al.  Acuity-sensitivity trade-offs of X and Y cells in the cat lateral geniculate complex: role of the medial interlaminar nucleus in scotopic vision. , 1992, Journal of neurophysiology.

[47]  D N Mastronarde,et al.  Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: Receptive-field properties and retinal inputs , 1992, Visual Neuroscience.

[48]  A L Humphrey,et al.  Lagged Y cells in the cat lateral geniculate nucleus , 1991, Visual Neuroscience.

[49]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[50]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[51]  B. Payne,et al.  Modular organization of on and off responses in the cat lateral geniculate nucleus , 1989, Neuroscience.

[52]  D. B. Bowling Timing differences between the light responses of X cells recorded simultaneously in cat lateral geniculate nucleus , 1989, Visual Neuroscience.

[53]  A. L. Humphrey,et al.  Functionally distinct groups of X‐cells in the lateral geniculate nucleus of the cat , 1988, The Journal of comparative neurology.

[54]  P. C. Murphy,et al.  Corticofugal feedback influences the generation of length tuning in the visual pathway , 1987, Nature.

[55]  M. Sur,et al.  Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. , 1987, Journal of neurophysiology.

[56]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[57]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[58]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. , 1987, Journal of neurophysiology.

[59]  D. B. Bowling,et al.  The distribution of on‐ and off‐centre X‐ and Y‐like cells in the A layers of the cat's lateral geniculate nucleus. , 1986, The Journal of physiology.

[60]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements , 1985, The Journal of comparative neurology.

[61]  B. B. Lee,et al.  A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. , 1985, The Journal of physiology.

[62]  A. L. Humphrey,et al.  Projection patterns of individual X‐ and Y‐cell axons from the lateral geniculate nucleus to cortical area 17 in the cat , 1985, The Journal of comparative neurology.

[63]  S. Lehmkuhle,et al.  A comparison between Y-cells in A-laminae and lamina C of cat dorsal lateral geniculate nucleus. , 1984, Journal of neurophysiology.

[64]  R. Shapley,et al.  The origin of the S (slow) potential in the mammalian Lateral Geniculate Nucleus , 1984, Experimental Brain Research.

[65]  D. Mastronarde Interactions between ganglion cells in cat retina. , 1983, Journal of neurophysiology.

[66]  C. Enroth-Cugell,et al.  Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements , 1982, Vision Research.

[67]  M Sur,et al.  Retinogeniculate terminations in cats: morphological differences between X and Y cell axons. , 1982, Science.

[68]  H. Wässle,et al.  The retinal projection to the thalamus in the cat: A quantitative investigation and a comparison with the retinotectal pathway , 1981, The Journal of comparative neurology.

[69]  M. J. Friedlander,et al.  Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. , 1981, Journal of neurophysiology.

[70]  A Hughes,et al.  Population magnitudes and distribution of the major modal classes of cat retinal ganglion cell as estimated from HRP filling and a systematic survey of the soma diameter spectra for classical neurones , 1981, The Journal of comparative neurology.

[71]  Robert Shapley,et al.  Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction velocities of their inputs , 1979, Experimental Brain Research.

[72]  H. Wässle,et al.  Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. , 1979, The Journal of physiology.

[73]  David Ferster,et al.  Proportion of interneurons in the cat's lateral geniculate nucleus , 1979, Brain Research.

[74]  F. Hajdu,et al.  Quantitative histological studies on the lateral geniculate nucleus in the cat. II. Cell numbers and densities in the several layers. , 1978, Journal fur Hirnforschung.

[75]  J. Stone,et al.  Estimate of the number of myelinated axons in the cat's optic nerve , 1978, The Journal of comparative neurology.

[76]  D Ferster,et al.  Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation , 1977, The Journal of comparative neurology.

[77]  J. Stone,et al.  Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. , 1976, Journal of neurophysiology.

[78]  A Hughes,et al.  A quantitative analysis of the cat retinal ganglion cell topography , 1975, The Journal of comparative neurology.

[79]  H. Wässle,et al.  The distribution of the alpha type of ganglion cells in the cat's retina , 1975, The Journal of comparative neurology.

[80]  J. Stone,et al.  Retinal distribution and central projections of Y-, X-, and W-cells of the cat's retina. , 1974, Journal of neurophysiology.

[81]  J. Stone,et al.  Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. , 1972, Journal of neurophysiology.

[82]  K. Sanderson,et al.  The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat , 1971, The Journal of comparative neurology.

[83]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[84]  W. Levick,et al.  Simultaneous recording of input and output of lateral geniculate neurones. , 1971, Nature: New biology.

[85]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[86]  J. Stone A quantitative analysis of the distribution of ganglion cells in the cat's retina , 1965, The Journal of comparative neurology.

[87]  Chun-I Yeh,et al.  On and off domains of geniculate afferents in cat primary visual cortex , 2008, Nature Neuroscience.

[88]  Chun-I Yeh,et al.  Visual stimuli modulate precise synchronous firing within the thalamus. , 2008, Thalamus & related systems.

[89]  J. Alonso,et al.  Retinogeniculate connections: A balancing act between connection specificity and receptive field diversity. , 2006, Progress in brain research.

[90]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[91]  J. P. Jones,et al.  The two-dimensional spectral structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[92]  S. Sherman Functional organization of the W-, X-, and Y- cell pathways in the cat: A review and hypothesis , 1985 .