Simulation study on ferroelectric layer thickness dependence RF/Analog and linearity parameters in ferroelectric tunnel junction TFET

Abstract In this paper, the impact of ferroelectric layer thickness (tFE) on input drain current characteristic is reported in ferroelectric tunnel junction (FTJ) TFET through TCAD simulator. In consecutive step, the RF/analog parameters such as transconductance (gm), output conductance (gd), gain (gm/gd), gate capacitance (Cgg), cut off frequency (ft), transconductance generation factor (TGF ​= ​gm/ID), transconductance frequency product (TFP), gain frequency product (GFP), and gain transconductance frequency product (GTFP) are highlighted as a function of tFE in FTJ TFET. Finally, the effect of tFE on linearity characteristic like harmonics of gm (gm2 and gm3), voltage intercept points (VIP2 and VIP3), power intercept point (IIP3), and 1-dB compression point are presented in FTJ-TFET. Results revealed that the scaling of tFE has noticeable influence on RF/analog and linearity performance in FTJ-TFET. The reduction in tFE improves the RF/analog performance, whereas, suppressed the linearity characteristic. Moreover, a comparative study of FTJ-TFET with ferroelectric TFET (F-TFET) and conventional TFET in terms of transfer characteristic, BTBT rate, eDensity, and electric field are highlighted through numerical simulator.

[1]  Sergei V. Kalinin,et al.  Polarization Control of Electron Tunneling into Ferroelectric Surfaces , 2009, Science.

[2]  Jason Hoffman,et al.  Ferroelectric Field Effect Transistors for Memory Applications , 2010, Advanced materials.

[3]  J D Burton,et al.  Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance States from first principles. , 2009, Nano letters.

[4]  H.C.Liu,et al.  Negative capacitance effect in semiconductor devices , 1998, cond-mat/9806145.

[5]  Ho Won Jang,et al.  Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.

[6]  Narayanan Vijaykrishnan,et al.  Device Circuit Co Design of FEFET Based Logic for Low Voltage Processors , 2016, 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[7]  P. Ghosh,et al.  Deep insight into material-dependent DC performance of Fe DS-SBTFET and its noise analysis in the presence of interface traps , 2020 .

[8]  P. Ghosh,et al.  Optimization of Ferroelectric SELBOX TFET and Ferroelectric SOI TFET , 2020 .

[9]  Rishu Chaujar,et al.  Device linearity and intermodulation distortion comparison of dual material gate and conventional AlGaN/GaN high electron mobility transistor , 2011, Microelectron. Reliab..

[10]  C. Hu,et al.  Optimization of Negative-Capacitance Vertical-Tunnel FET (NCVT-FET) , 2020, IEEE Transactions on Electron Devices.

[11]  S. Haji-Nasiri,et al.  Benefitting from High-κ Spacer Engineering in Balistic Triple-Gate Junctionless FinFET- a Full Quantum Study , 2019, Silicon.

[12]  A. Orouji,et al.  Enhancement of a Nanoscale Novel Esaki Tunneling Diode Source TFET (ETDS-TFET) for Low-Voltage Operations , 2018, Silicon.

[13]  C. Hu,et al.  Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation , 2011, 2011 International Electron Devices Meeting.

[14]  S. Baishya,et al.  Comparative Analysis Among Single Material Gate, Double Material Gate, and Triple Material Gate FinFETs: RF/Analog and Digital Inverter Performance , 2018, Journal of Nanoelectronics and Optoelectronics.

[15]  B. Bhowmick,et al.  Effect of Curie Temperature on Ferroelectric Tunnel FET and Its RF/Analog Performance , 2020, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[16]  K. Boucart,et al.  The Hysteretic Ferroelectric Tunnel FET , 2010, IEEE Transactions on Electron Devices.

[17]  Walter Hartner,et al.  FeRAM technology for high density applications , 2001, Microelectron. Reliab..

[18]  Electroresistance effects in ferroelectric tunnel barriers , 2010, 1006.1716.

[19]  E. Tsymbal,et al.  Giant Electroresistance in Ferroelectric Tunnel Junctions , 2005, cond-mat/0502109.

[20]  S. Baishya,et al.  Deep insight into DC, RF/analog, and digital inverter performance due to variation in straggle parameter for gate modulated TFET , 2019, Materials Science in Semiconductor Processing.

[21]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[22]  Dheeraj Sharma,et al.  Analyses of DC and analog/RF performances for short channel quadruple-gate gate-all-around MOSFET , 2015, Microelectron. J..

[23]  Basab Das,et al.  Noise behavior of ferro electric tunnel FET , 2020, Microelectron. J..

[24]  A. Orouji,et al.  Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism , 2012 .

[25]  Byung-Gook Park,et al.  Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec , 2007, IEEE Electron Device Letters.

[26]  Masud H. Chowdhury,et al.  Partially Depleted Silicon-on-Ferroelectric Insulator Field Effect Transistor- Parametrization & Design Optimization for Minimum Subthreshold Swing , 2015, Microelectron. J..

[27]  Alok Naugarhiya,et al.  RF & linearity distortion sensitivity analysis of DMG-DG-Ge pocket TFET with hetero dielectric , 2021, Microelectron. J..

[28]  S. Baishya,et al.  Temperature effect on RF/analog and linearity parameters in DMG FinFET , 2018, Applied Physics A.

[29]  Chenming Hu,et al.  Electrical characteristics of ferroelectric PZT thin films for DRAM applications , 1992 .

[30]  Chandan Kumar Sarkar,et al.  Impact of the lateral straggle on the Analog and RF performance of TFET , 2015, Microelectron. Reliab..

[31]  Brinda Bhowmick,et al.  Optimization of ferroelectric tunnel junction TFET in presence of temperature and its RF analysis , 2019, Microelectron. J..

[32]  Manas Ranjan Tripathy,et al.  Investigation of DC, RF and linearity performances of a back-gated (BG) heterojunction (HJ) TFET-on-selbox-substrate (STFET): Introduction to a BG-HJ-STEFT based CMOS inverter , 2020, Microelectron. J..

[33]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[34]  E. Tsymbal,et al.  Ferroelectric tunnel memristor. , 2012, Nano letters.

[35]  P. Ghosh,et al.  Investigation of Electrical Characteristics in a Ferroelectric L-Patterned Gate Dual Tunnel Diode TFET , 2020, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[36]  T. Mikolajick,et al.  Reliability Characteristics of Ferroelectric $ \hbox{Si:HfO}_{2}$ Thin Films for Memory Applications , 2013, IEEE Transactions on Device and Materials Reliability.

[37]  T. Boscke,et al.  Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors , 2011, 2011 International Electron Devices Meeting.

[38]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[39]  Ru Huang,et al.  An Analytical Surface Potential Model Accounting for the Dual-Modulation Effects in Tunnel FETs , 2014, IEEE Transactions on Electron Devices.

[40]  Dheeraj Sharma,et al.  Drain Work Function Engineered Doping-Less Charge Plasma TFET for Ambipolar Suppression and RF Performance Improvement: A Proposal, Design, and Investigation , 2016, IEEE Transactions on Electron Devices.

[41]  Adrian M. Ionescu,et al.  Modeling and simulation of low power ferroelectric non-volatile memory tunnel field effect transistors using silicon-doped hafnium oxide as gate dielectric , 2016 .