Simultaneous coupling of fluids and deformable bodies

This paper presents a method for simulating the two-way interaction between fluids and deformable solids. The fluids are simulated using an incompressible Eulerian formulation where a linear pressure projection on the fluid velocities enforces mass conservation. Similarly, elastic solids are simulated using a semi-implicit integrator implemented as a linear operator applied to the forces acting on the nodes in Lagrangian formulation. The proposed method enforces coupling constraints between the fluid and the elastic systems by combining both the pressure projection and implicit integration steps into one set of simultaneous equations. Because these equations are solved simultaneously the resulting combined system treats closed regions in a physically correct fashion, and has good stability characteristics allowing for relatively large time steps. This general approach is not tied to any particular volume discretization of fluid or solid, and we present results implemented using both regular-grid and tetrahedral simulations.

[1]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[2]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[3]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[4]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[5]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[6]  Jessica K. Hodgins,et al.  Animating explosions , 2000, SIGGRAPH.

[7]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[8]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[9]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[10]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[11]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[12]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[13]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[14]  James F. O'Brien,et al.  Animating suspended particle explosions , 2003, ACM Trans. Graph..

[15]  Jean-Michel Dischler,et al.  Simulating Fluid-Solid Interaction , 2003, Graphics Interface.

[16]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[17]  Greg Turk,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, ACM Trans. Graph..

[18]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[19]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[20]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[21]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[22]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, SIGGRAPH 2005.

[23]  James F. O'Brien,et al.  Fluids in deforming meshes , 2005, SCA '05.

[24]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[25]  Ronald Fedkiw,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH '05.

[26]  James F. O'Brien,et al.  Simultaneous Coupling of Fluids and Deformable Bodies sketch 0566 , 2006 .

[27]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, SIGGRAPH 2006.

[28]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[29]  James F. O'Brien,et al.  A semi-Lagrangian contouring method for fluid simulation , 2005, TOGS.

[30]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..