Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large‐scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co‐evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.

[1]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[2]  Characterization of nucleotide pools as a function of physiological state in Escherichia coli. , 2008, Journal of bacteriology.

[3]  M. Hacker,et al.  Pharmacology: Principles and Practice , 2008 .

[4]  N. Juge,et al.  Microbial adhesins to gastrointestinal mucus. , 2012, Trends in microbiology.

[5]  Henry H Nguyen,et al.  Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB). , 2010, Biochemistry.

[6]  R. Freter,et al.  Mechanisms That Control Bacterial Populations in Continuous-Flow Culture Models of Mouse Large Intestinal Flora , 1983, Infection and immunity.

[7]  Jeffrey I. Gordon,et al.  Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Doré,et al.  Functional Metagenomics Reveals Novel Pathways of Prebiotic Breakdown by Human Gut Bacteria , 2013, PloS one.

[9]  Oleg Paliy,et al.  Physiological Studies of Escherichia coli Strain MG1655: Growth Defects and Apparent Cross-Regulation of Gene Expression , 2003, Journal of bacteriology.

[10]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[11]  T K Johnson,et al.  Pharmacokinetic modeling. , 1993, Medical physics.

[12]  J. Doré,et al.  Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. , 2010, Genome research.

[13]  J. Sonnenburg,et al.  Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations , 2010, Cell.

[14]  S. Swift,et al.  Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. , 1998, FEMS microbiology letters.

[15]  J. Doré,et al.  A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome , 2010, Proceedings of the National Academy of Sciences.

[16]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[17]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[18]  Benjamin P. Westover,et al.  Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont , 2005, Science.

[19]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[20]  E. Delong,et al.  Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon , 1996, Journal of bacteriology.

[21]  R. Ley,et al.  Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine , 2006, Cell.

[22]  L. Hooper,et al.  Bacterial contributions to mammalian gut development. , 2004, Trends in microbiology.

[23]  P. Silverman,et al.  Contributions of promoter context and structure to regulated expression of the F plasmid traY promoter in Escherichia coli K‐12 , 1993, Molecular microbiology.

[24]  A. Sonenshein,et al.  Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. , 2001, Genes & development.

[25]  Lu Wang,et al.  The NIH Human Microbiome Project. , 2009, Genome research.

[26]  E. Bremer,et al.  The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12 , 1995, Molecular and General Genetics MGG.

[27]  G. Storz,et al.  The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF‐I) protein , 1998, The EMBO journal.

[28]  Peter D. Karp,et al.  EcoCyc: a comprehensive database of Escherichia coli biology , 2010, Nucleic Acids Res..

[29]  Alan W Walker,et al.  Phylogeny, culturing, and metagenomics of the human gut microbiota. , 2014, Trends in microbiology.

[30]  R. Sleator,et al.  Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome , 2012, The ISME Journal.

[31]  Klaus Ley,et al.  Bacterial colonization factors control specificity and stability of the gut microbiota , 2013, Nature.

[32]  H. Wexler,et al.  Characteristics of Bacteroides fragilis lacking the major outer membrane protein, OmpA. , 2009, Microbiology.

[33]  G. Church,et al.  Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora , 2009, Science.

[34]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[35]  D. Relman,et al.  An ecological and evolutionary perspective on human–microbe mutualism and disease , 2007, Nature.

[36]  R. Cunningham,et al.  Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA , 2012, Proceedings of the National Academy of Sciences.

[37]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[38]  J. Sarver,et al.  Chapter 10 – Pharmacokinetic Modeling , 2009 .

[39]  J. Doré,et al.  Functional Metagenomics: A High Throughput Screening Method to Decipher Microbiota-Driven NF-κB Modulation in the Human Gut , 2010, PloS one.

[40]  Paul S. Cohen,et al.  Nutritional Basis for Colonization Resistance by Human Commensal Escherichia coli Strains HS and Nissle 1917 against E. coli O157:H7 in the Mouse Intestine , 2013, PloS one.

[41]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[42]  J. Gordon,et al.  Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. , 2008, Cell host & microbe.

[43]  Rob Knight,et al.  Identifying genetic determinants needed to establish a human gut symbiont in its habitat. , 2009, Cell host & microbe.

[44]  J. Gordon,et al.  Genomic and Metabolic Studies of the Impact of Probiotics on a Model Gut Symbiont and Host , 2006, PLoS biology.

[45]  H. Kaback,et al.  Surface-exposed positions in the transmembrane helices of the lactose permease of Escherichia coli determined by intermolecular thiol cross-linking , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  L. Comstock,et al.  An Ecological Network of Polysaccharide Utilization among Human Intestinal Symbionts , 2014, Current Biology.

[47]  A. Camilli,et al.  Tn-seq; high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms , 2009, Nature Methods.

[48]  J. Gordon,et al.  Functional Genomic and Metabolic Studies of the Adaptations of a Prominent Adult Human Gut Symbiont, Bacteroides thetaiotaomicron, to the Suckling Period* , 2006, Journal of Biological Chemistry.

[49]  R. M. Ray,et al.  Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose , 1995, Applied Microbiology and Biotechnology.

[50]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[51]  T. Baussant,et al.  Cutting Edge: Outer Membrane Protein A (OmpA) Binds to and Activates Human Macrophages , 2000, The Journal of Immunology.

[52]  S. Adhya,et al.  Control of transcription of gal repressor and isorepressor genes in Escherichia coli , 1993, Journal of bacteriology.

[53]  L. Jost Entropy and diversity , 2006 .

[54]  S. Hull,et al.  Comparison of Loss of Serum Resistance by Defined Lipopolysaccharide Mutants and an Acapsular Mutant of UropathogenicEscherichia coli O75:K5 , 1998, Infection and Immunity.

[55]  Chikara Furusawa,et al.  Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using 13 C metabolic flux analysis , 2012, Microbial Cell Factories.

[56]  S. Ichinose,et al.  OmpA variants affecting the adherence of ulcerative colitis-derived Bacteroides vulgatus. , 2010, Journal of medical and dental sciences.

[57]  R. K. Mehra,et al.  Dual control of the gua operon of Escherichia coli K12 by adenine and guanine nucleotides. , 1981, Journal of general microbiology.

[58]  J. Handelsman,et al.  Cloning the Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms , 2000, Applied and Environmental Microbiology.

[59]  Tommi S. Jaakkola,et al.  Continuous Representations of Time-Series Gene Expression Data , 2003, J. Comput. Biol..

[60]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[61]  M. Valvano,et al.  Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. , 2002, Microbiology.

[62]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[63]  M. Valvano,et al.  Biosynthesis Pathway of ADP-l-glycero-β-d-manno-Heptose in Escherichia coli , 2002 .

[64]  S. L. Chiang,et al.  rfb Mutations in Vibrio cholerae Do Not Affect Surface Production of Toxin-Coregulated Pili but Still Inhibit Intestinal Colonization , 1999, Infection and Immunity.

[65]  S. Adhya,et al.  Isorepressor of the gal regulon in Escherichia coli. , 1992, Journal of molecular biology.