Stabilization of electro-optic modulator bias voltage drift using a lock-in amplifier and a proportional-integral-derivative controller in a distributed Brillouin sensor system.

In a distributed Brillouin sensor system, it is crucial to keep the pulse energy uniform for a constant signal-to-noise ratio. This means that the variable dc leakage (pulse base) for the electro-optic modulator (EOM) must be locked. We examine two different methods of locking the EOM bias voltage and look at the advantages and disadvantages of each locking method. It is found that the two locking methods, one based on a lock-in amplifier and the other using proportional-integral-derivative control, both have applications in which they excel at locking the pulse base.