Bayesian assessment of assumptions of regression analysis

Many statistical procedures are based on the models which specify the conditions under which the data are generated. Many applications of linear regression, for example, assume that:(i) the observations are independent; (ii) the errors in the observations are identically distributed; (iii) each error has a normal distribution with mean zero and unknown variance σ2> 0. Previous works have examined individual departures from these assumptions. Here we examine composite departures. It is assumed that the error distribution in a linear model is power-exponential and that the observations are generated via a first order autoregressive model with the possibility of spurious observations. The consequences are illustrated via an example.