Dynamic high gain observer design

A dynamic high gain based observer is proposed for the class of uniformly observable systems which are observable for any inputs. The main feature of this observer consists in an appropriate calibration of the observation gain through a single parameter governed by some scalar Riccati equation. Simulation results are given in order to highlight the performances of the proposed observer, namely its exponentiel convergence and insensitivity with respect to noise measurements.

[1]  Alain Glumineau,et al.  Direct transformation of nonlinear systems into state affine MISO form for observer design , 2003, IEEE Trans. Autom. Control..

[2]  Martin Guay,et al.  Observer linearization by output-dependent time-scale transformations , 2002, IEEE Trans. Autom. Control..

[3]  Petar V. Kokotovic,et al.  Nonlinear observers: a circle criterion design and robustness analysis , 2001, Autom..

[4]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[5]  H. Hammouri,et al.  Nonlinear observers for locally uniformly observable systems , 2003 .

[6]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[7]  Prashanth Krishnamurthy,et al.  Dynamic high-gain scaling: State and output feedback with application to systems with ISS appended dynamics driven by all States , 2004, IEEE Transactions on Automatic Control.

[8]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[9]  Jean-Paul Gauthier,et al.  Observability and observers for non-linear systems , 1986 .

[10]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[11]  Mohammed M'Saad,et al.  Observer design for a class of MIMO nonlinear systems , 2004, Autom..

[12]  J. Gauthier,et al.  Exponentially converging observers for distillation columns and internal stability of the dynamic output feedback , 1992 .

[13]  Wei Lin,et al.  Universal adaptive control of nonlinear systems with unknown growth rate by output feedback , 2006, Autom..

[14]  H. Hammouri,et al.  State observation of a nonlinear system: Application to (bio)chemical processes , 1999 .

[15]  K. Busawon,et al.  A nonlinear observer for induction motors , 2001 .

[16]  Eric Busvelle,et al.  Stability of polymerization reactors using I/O linearization and a high-gain observer , 1995, Autom..

[17]  심형보 A passivity-based nonlinear observer and a semi-global separation principle , 2000 .

[18]  Murat Arcak,et al.  Observer design for systems with multivariable monotone nonlinearities , 2003, Syst. Control. Lett..

[19]  M. Hou,et al.  Observer with linear error dynamics for nonlinear multi-output systems , 1999 .

[20]  J. Rudolph,et al.  A block triangular nonlinear observer normal form , 1994 .

[21]  Krishna Busawon,et al.  Observer design based on triangular form generated by injective map , 2000, IEEE Trans. Autom. Control..

[22]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[23]  Laurent Praly Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate , 2003, IEEE Trans. Autom. Control..

[24]  H. Shim,et al.  Semi-global observer for multi-output nonlinear systems , 2001 .