Minimal Resource Allocating Networks for Discrete Time Sliding Mode Control of Robotic Manipulators

This paper presents a discrete-time sliding mode control based on neural networks designed for robotic manipulators. Radial basis function neural networks are used to learn about uncertainties affecting the system. The online learning algorithm combines the growing criterion and the pruning strategy of the minimal resource allocating network technique with an adaptive extended Kalman filter to update all the parameters of the networks. A method to improve the run-time performance for the real-time implementation of the learning algorithm has been considered. The analysis of the control stability is given and the controller is evaluated on the ERICC robot arm. Experiments show that the proposed controller produces good trajectory tracking performance and it is robust in the presence of model inaccuracies, disturbances and payload perturbations.

[1]  Marco H. Terra,et al.  Experimental investigation on adaptive robust controller designs applied to a free-floating space manipulator , 2011 .

[2]  Silvio Simani,et al.  Identification and fault diagnosis of a simulated model of an industrial gas turbine , 2005, IEEE Transactions on Industrial Informatics.

[3]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[4]  Hicham Chaoui,et al.  ANN-Based Adaptive Control of Robotic Manipulators With Friction and Joint Elasticity , 2009, IEEE Transactions on Industrial Electronics.

[5]  Chintae Choi,et al.  Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control , 2009, IEEE Transactions on Industrial Electronics.

[6]  Eric Monmasson,et al.  FPGAs in Industrial Control Applications , 2011, IEEE Transactions on Industrial Informatics.

[7]  Anna Kucerová,et al.  Optimal design and optimal control of structures undergoing finite rotations and elastic deformations , 2009, ArXiv.

[8]  Huiling Zhu,et al.  Adaptive Fuzzy Sliding Mode Control Algorithm for a Non-Affine Nonlinear System , 2007, IEEE Transactions on Industrial Informatics.

[9]  Sauro Longhi,et al.  Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots , 1999, IEEE Trans. Robotics Autom..

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[12]  Weibing Gao,et al.  Discrete-time variable structure control systems , 1995, IEEE Trans. Ind. Electron..

[13]  Tianyou Chai,et al.  Neural-Network-Based Terminal Sliding-Mode Control of Robotic Manipulators Including Actuator Dynamics , 2009, IEEE Transactions on Industrial Electronics.

[14]  Antti J. Koivo,et al.  Nonlinear predictive control with application to manipulator with flexible forearm , 1999, IEEE Trans. Ind. Electron..

[15]  Teresa Orlowska-Kowalska,et al.  Performance Improvement of Industrial Drives With Mechanical Elasticity Using Nonlinear Adaptive Kalman Filter , 2008, IEEE Transactions on Industrial Electronics.

[16]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[17]  Visakan Kadirkamanathan,et al.  A Function Estimation Approach to Sequential Learning with Neural Networks , 1993, Neural Computation.

[18]  Robert M. Sanner,et al.  Stable Adaptive Control of Robot Manipulators Using Neural Networks , 1995, Neural Computation.

[19]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[20]  Sanjay E. Talole,et al.  Extended-State-Observer-Based Control of Flexible-Joint System With Experimental Validation , 2010, IEEE Transactions on Industrial Electronics.

[21]  S. Nicosia,et al.  Robot control by using only joint position measurements , 1990 .

[22]  G. Feng,et al.  An adaptive fuzzy controller based on sliding mode for robot manipulators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[23]  P. Dorato,et al.  Survey of robust control for rigid robots , 1991, IEEE Control Systems.

[24]  Xinghuo Yu,et al.  ZOH Discretization Effect on Higher-Order Sliding-Mode Control Systems , 2008, IEEE Transactions on Industrial Electronics.

[25]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[26]  Abhisek Ukil,et al.  Development and Implementation of Parameterized FPGA-Based General Purpose Neural Networks for Online Applications , 2011, IEEE Transactions on Industrial Informatics.

[27]  Xinghuo Yu,et al.  Convergence accuracy analysis of discretized sliding mode control systems , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[28]  Rong-Jong Wai,et al.  Robust Neural-Fuzzy-Network Control for Robot Manipulator Including Actuator Dynamics , 2006, IEEE Transactions on Industrial Electronics.

[29]  J. Juang,et al.  Predictive feedback and feedforward control for systems with unknown disturbances , 1999 .

[30]  Frank L. Lewis,et al.  Neural net robot controller: Structure and stability proofs , 1993, J. Intell. Robotic Syst..

[31]  Peng-Yung Woo,et al.  An adaptive fuzzy sliding mode controller for robotic manipulators , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[32]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[33]  Maria Letizia Corradini,et al.  A discrete adaptive variable-structure controller for MIMO systems, and its application to an underwater ROV , 1997, IEEE Trans. Control. Syst. Technol..

[34]  Mehmet Önder Efe,et al.  Neural Network Assisted Computationally Simple PI$^\lambda$D$^\mu$ Control of a Quadrotor UAV , 2011, IEEE Transactions on Industrial Informatics.

[35]  Frank L. Lewis,et al.  Neural Network Control Of Robot Manipulators And Non-Linear Systems , 1998 .

[36]  L. Jetto,et al.  Low a priori statistical information model for optimal smoothing and differentiation of noisy signals , 1994 .

[37]  Corrado Guarino Lo Bianco,et al.  Nonlinear filters for the generation of smooth trajectories , 2000, Autom..

[38]  Asif Sabanoviç,et al.  Variable Structure Systems With Sliding Modes in Motion Control—A Survey , 2011, IEEE Transactions on Industrial Informatics.

[39]  Yoshiki Uchikawa,et al.  A neural network compensator for uncertainties of robotics manipulators , 1992, IEEE Trans. Ind. Electron..

[40]  Xinghuo Yu,et al.  ZOH discretization effect on single-input sliding mode control systems with matched uncertainties , 2009, Autom..

[41]  Li Li,et al.  Neuro-Fuzzy Dynamic-Inversion-Based Adaptive Control for Robotic Manipulators—Discrete Time Case , 2007, IEEE Transactions on Industrial Electronics.

[42]  Yi Zhao,et al.  Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy , 2009, IEEE Transactions on Industrial Informatics.

[43]  Chaio-Shiung Chen Dynamic Structure Neural-Fuzzy Networks for Robust Adaptive Control of Robot Manipulators , 2008, IEEE Transactions on Industrial Electronics.

[44]  An-Chyau Huang,et al.  Adaptive Control for Flexible-Joint Electrically Driven Robot With Time-Varying Uncertainties , 2007, IEEE Transactions on Industrial Electronics.

[45]  Giuseppe Acciani,et al.  Application of neural networks in optical inspection and classification of solder joints in surface mount technology , 2006, IEEE Transactions on Industrial Informatics.

[46]  Giuseppe Acciani,et al.  A Neurofuzzy Method for the Evaluation of Soldering Global Quality Index , 2009, IEEE Transactions on Industrial Informatics.

[47]  Antonella Ferrara,et al.  Second order sliding mode motion control of rigid robot manipulators , 2007, 2007 46th IEEE Conference on Decision and Control.

[48]  Xuemei Ren,et al.  Neural Network-Based Compensation Control of Robot Manipulators with Unknown Dynamics , 2007, 2007 American Control Conference.

[49]  Maria Letizia Corradini,et al.  A Quasi-Sliding Mode Approach for Robust Control and Speed Estimation of PM Synchronous Motors , 2012, IEEE Transactions on Industrial Electronics.

[50]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[51]  Fuchun Sun,et al.  Neural network-based adaptive controller design of robotic manipulators with an observer , 2001, IEEE Trans. Neural Networks.

[52]  Peng-Yung Woo,et al.  Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators , 2006, IEEE Transactions on Industrial Electronics.

[53]  Katsuhisa Furuta,et al.  VSS type self-tuning control , 1993, IEEE Trans. Ind. Electron..

[54]  Teresa Orlowska-Kowalska,et al.  FPGA Implementation of the Multilayer Neural Network for the Speed Estimation of the Two-Mass Drive System , 2011, IEEE Transactions on Industrial Informatics.

[55]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[56]  Shuzhi Sam Ge,et al.  Adaptive Neural Network Control of Robotic Manipulators , 1999, World Scientific Series in Robotics and Intelligent Systems.

[57]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation (3rd Edition) , 2007 .

[58]  Okyay Kaynak,et al.  Neuro sliding mode control of robotic manipulators , 2000 .

[59]  Jang Gyu Lee,et al.  Adaptive Two-Stage Extended Kalman Filter for a Fault-Tolerant INS-GPS Loosely Coupled System , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[60]  A. Zinober Variable Structure and Lyapunov Control , 1994 .

[61]  Frank L. Lewis,et al.  Multilayer neural-net robot controller with guaranteed tracking performance , 1996, IEEE Trans. Neural Networks.

[62]  Sauro Longhi,et al.  On-line steam production prediction for a municipal solid waste incinerator by fully tuned minimal RBF neural networks , 2011 .

[63]  Sauro Longhi,et al.  Lyapunov-based switching control using neural networks for a remotely operated vehicle , 2007, Int. J. Control.

[64]  Jun-Ho Oh,et al.  Improvements on VSS-type self-tuning control for a tracking controller , 1998, IEEE Trans. Ind. Electron..

[65]  Peter Xiaoping Liu,et al.  Robust Sliding Mode Control for Robot Manipulators , 2011, IEEE Transactions on Industrial Electronics.

[66]  Toshiyuki Murakami,et al.  Null Space Motion Control by PID Control Considering Passivity in Redundant Manipulator , 2008, IEEE Transactions on Industrial Informatics.

[67]  Okyay Kaynak,et al.  Discrete-time sliding mode control in the presence of system uncertainty , 1993 .

[68]  Yoshiki Uchikawa,et al.  Trajectory control of robotic manipulators using neural networks , 1991 .

[69]  N. Sundararajan,et al.  Fully Tuned Radial Basis Function Neural Networks for Flight Control , 2001, The Springer International Series on Asian Studies in Computer and Information Science.

[70]  Paramasivan Saratchandran,et al.  Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm , 1998, IEEE Trans. Neural Networks.

[71]  Toshio Fukuda,et al.  Adaptive quasi-sliding-mode tracking control for discrete uncertain input-output systems , 2001, IEEE Trans. Ind. Electron..

[72]  Hideki Hashimoto,et al.  Implementation of VSS control to robotic manipulators-smoothing modification , 1989 .

[73]  Shay-Ping Thomas Wang,et al.  Nonlinear robust industrial robot control , 1987 .

[74]  Antonella Ferrara,et al.  Trajectory Planning and Second-Order Sliding Mode Motion/Interaction Control for Robot Manipulators in Unknown Environments , 2012, IEEE Transactions on Industrial Electronics.