Distributed evolutionary algorithms for simulation optimization

The optimization of such complex systems as manufacturing systems often necessitates the use of simulation. In this paper, the use of evolutionary algorithms is suggested for the optimization of simulation models. Several types of variables are taken into account. The reduction of computing cost is achieved through the parallelization of this method, which allows several simulation experiments to be run simultaneously. Emphasis is put on a distributed approach where several computers manage both their own local population of solutions and their own simulation experiments, exchanging solutions using a migration operator. After a first evaluation through a mathematical function with a known optimum, the benefits of this new approach are demonstrated through the example of a transport lot sizing and transporter allocation problem in a manufacturing flow shop system, which is solved using a distributed software implemented on a network of eight Sun workstations.

[1]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[2]  Alexander Reinefeld,et al.  Parallel search in discrete optimization problems , 1996, Simul. Pract. Theory.

[3]  Jack P. C. Kleijnen,et al.  Simulation and optimization in production planning: A case study , 1993, Decis. Support Syst..

[4]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[5]  Young-Hae Lee,et al.  Part ordering through simulation-optimization in an FMS , 1991 .

[6]  Felix Breitenecker,et al.  Genetic Algorithms in Discrete Event Simulation , 1995, EUROSIM International Conference.

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Michael C. Fu,et al.  Optimization via simulation: A review , 1994, Ann. Oper. Res..

[9]  M. Gourgand,et al.  Couplage méthodes d'ordonnancement-simulation pour l'ordonnancement de systèmes industriels de traitement de surface , 1995 .

[10]  Jorge Haddock,et al.  Simulation optimization using simulated annealing , 1992 .

[11]  J. Talavage,et al.  Optimization of stochastic simulation models , 1980 .

[12]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[13]  Dana S. Richards,et al.  Genetic Algorithms and Punctuated Equilibria in VLSI , 1990, PPSN.

[14]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[15]  Averill M. Law,et al.  Simulation Modeling & Analysis , 1991 .

[16]  Pandu R. Tadikamalla,et al.  Output maximization of a CIM system: simulation and statistical approach , 1993 .

[17]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[18]  Dirk Van Gucht,et al.  Parallel Genetic Algorithms Applied to the Traveling Salesman Problem , 1991, SIAM J. Optim..

[19]  Meir J. Rosenblatt,et al.  A COMBINED OPTIMIZATION AND SIMULATION APPROACH FOR DESIGNING AUTOMATED STORAGE/RETRIEVAL SYSTEMS , 1993 .

[20]  Bernard P. Zeigler,et al.  DEVS-C++: a high performance modelling and simulation environment , 1996, Proceedings of HICSS-29: 29th Hawaii International Conference on System Sciences.

[21]  Zbigniew Michalewicz,et al.  Evolutionary algorithms for constrained engineering problems , 1996, Computers & Industrial Engineering.

[22]  M.-C. Portmann,et al.  Les algorithmes génétiques et leur application aux problèmes d'ordonnancement , 1995 .

[23]  Thomas Bäck,et al.  An Overview of Evolutionary Computation , 1993, ECML.

[24]  Georg Ch. Pflug Optimizing simulated systems , 1984, SIML.

[25]  C. Dennis Pegden,et al.  A decision-optimization module for SLAM , 1980 .

[26]  Nasser Mebarki Une approche d'ordonnancement temps réel basée sur la sélection dynamique de règles de priorité , 1995 .

[27]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[28]  Bernard P. Zeigler,et al.  Asynchronous Genetic Algorithms on Parallel Computers , 1993, ICGA.

[29]  Jeffrey D. Tew,et al.  Simulation optimization by genetic search , 1994 .

[30]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[31]  Felix Breitenecker,et al.  Coupling Simulators with the Model Interconnection Concept and PVM , 1995, EUROSIM.

[32]  Farhad Azadivar,et al.  A tutorial on simulation optimization , 1992, WSC '92.

[33]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[34]  Robert W. Brennan,et al.  Stochastic optimization applied to a manufacturing system operation problem , 1995, WSC '95.