Psychophysically based model of surface gloss perception

In this paper we introduce a new model of surface appearance that is based on quantitative studies of gloss perception. We use image synthesis techniques to conduct experiments that explore the relationships between the physical dimensions of glossy reflectance and the perceptual dimensions of glossy appearance. The product of these experiments is a psychophysically-based model of surface gloss, with dimensions that are both physically and perceptually meaningful and scales that reflect our sensitivity to gloss variations. We demonstrate that the model can be used to describe and control the appearance of glossy surfaces in synthesis images, allowing prediction of gloss matches and quantification of gloss differences. This work represents some initial steps toward developing psychophyscial models of the goniometric aspects of surface appearance to complement widely-used colorimetric models.

[1]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[2]  Christophe Schlick,et al.  A Customizable Reflectance Model for Everyday Rendering , 1993 .

[3]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997, SIGGRAPH '97.

[4]  Christine D. Piatko,et al.  A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes , 1997, IEEE Trans. Vis. Comput. Graph..

[5]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[6]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[7]  Jessica K. Hodgins,et al.  Two methods for display of high contrast images , 1999, TOGS.

[8]  Jos Stam,et al.  Diffraction shaders , 1999, SIGGRAPH.

[9]  F. Billmeyer,et al.  Visual gloss scaling and multidimensional scaling analysis of painted specimens , 1987 .

[10]  D. L. Macadam Visual Sensitivities to Color Differences in Daylight , 1942 .

[11]  A. Linksz Outlines of a Theory of the Light Sense. , 1965 .

[12]  S. Nishida,et al.  Use of image-based information in judgments of surface-reflectance properties. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Fred W. Billmeyer,et al.  Psychometric Scaling of Gloss , 1986 .

[14]  Michael H. Brill,et al.  Color appearance models , 1998 .

[15]  Donald P. Greenberg,et al.  A multiscale model of adaptation and spatial vision for realistic image display , 1998, SIGGRAPH.

[16]  Bernice E. Rogowitz,et al.  Human Vision and Electronic Imaging II , 1997 .

[17]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[18]  Ewald Hering Outlines of a theory of the light sense , 1964 .

[19]  E. Mingolla,et al.  Perception of surface curvature and direction of illumination from patterns of shading. , 1983, Journal of experimental psychology. Human perception and performance.

[20]  A. Parducci Chapter 5 – CONTEXTUAL EFFECTS: A RANGE–FREQUENCY ANALYSIS* , 1974 .

[21]  H. Bülthoff,et al.  Does the brain know the physics of specular reflection? , 1990, Nature.

[22]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[23]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[24]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[25]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[26]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[27]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .