Development of an Extrinsic dual-cavity Fiber Fabry-Perot interferometer : Applications to periodic and non-periodic vibration measurements

Le travail presente dans cette these concerne le developpement et la caracterisation d'un interferometre extrinseque a double cavites de type Fabry-Perot (EFFPI) en vue de l'analyse de vibrations periodiques et non periodiques. Cette these est divisee en 5 chapitres. Dans le chapitre I, nous donnons un panorama des mesures de vibration et de leurs techniques associees de type optique ou non-optique. Nous fournissons une description generale des caracteristiques des interferometres a fibre optique. Nous justifions le choix du systeme de type Fabry-Perot par ses proprietes de mesure sans contact, sa flexibilite geometrique, ainsi que sa facilite d'utilisation. Le chapitre II presente le principe de fonctionnement du EFFPI. Le systeme comprend une cavite virtuelle pseudo-duale obtenue par l'introduction d'une optique de polarisation dans le chemin optique de la cavite de mesure. Cette configuration permet d'obtenir deux signaux d'interference en quadrature, ce qui elimine l'ambiguite de direction. Les proprietes generales de l'interferometre telles que la reflectance et la visibilite de franges ont ete caracterisees experimentalement. En particulier, les etats de polarisation des faisceaux d'entree et de sortie ont ete etudies pour mieux comprendre l'attenuation induite dans les signaux d'interference afin de pouvoir minimiser ce phenomene. Dans le chapitre III, nous proposons une technique de demodulation de franges de type passage a zero modifiee pour obtenir l'information de deplacement. La resolution obtenue dans cette technique de demodulation est determinee par le nombre de sous-niveaux de decomposition des signaux d'interference. Dans ce travail, une resolution de λ/64 s'est averee suffisante pour des applications a des vibrations periodiques de relativement grande amplitude. Differentes excitations de type sinusoidal, carre et triangulaire ont ete testees. Les erreurs provoquees par la variation de temperature de la source laser ainsi que celles apportees par la variation d'orientation de la cible durant la mesure de deplacement ont ete etudiees. Dans le chapitre IV, nous decrivons une technique de demodulation a poursuite de phase pouvant operer sur une cible soumise a un deplacement non-periodique. Le developpement d'un programme de simulation et de demodulation a permis l'analyse des erreurs de phase, l'effet du bruit aleatoire et du bruit de quantification, etc. Les erreurs de phase peuvent etre corrigees par le demodulateur alors que les erreurs dues au bruit peuvent etre reduites par une methode de correction d'amplitude. Des tests experimentaux realises a partir d'excitations de type carre avec un transducteur piezo-electrique (PZT) muni d'un capteur capacitif ont montre un tres bon accord sur les mesures (difference de quelques nanometres seulement). Nous avons utilise le EFFPI pour deux applications specifiques. En sismometrie, nous avons montre son aptitude a la mesure d'amplitude et de vitesse des vibrations. Dans une seconde application, le systeme a permis de mesurer de facon precise les variations de niveau d'un liquide dans un systeme d'inclinometrie optique basee sur le principe des vases communicants. Le dernier chapitre donne les conclusions sur le travail realise et propose des perspectives afin d'ameliorer les performances du capteur developpe. ABSTRACT : The work involved in this thesis principally concerns the development and characterization of a dual-cavity Extrinsic Fiber Fabry-Perot Interferometer (EFFPI), with the specific aims of analyzing both periodic and non-periodic vibrations. This thesis is divided into five chapters. In chapter I, we provide a brief overview of vibration measurements and their associated techniques, both optical and non-optical. A general description of the characteristics of fiber optic interferometers most suited for this application is next included. The emphasis on non-contact measurement, geometrical flexibility, accessibility to the mesurand in question and the ease of deployment orientates our choice towards the fiber Fabry-Perot device. Chapter II presents the operating principles of the EFFPI. The device contains a “virtual” pseudo-dual-cavity which is generated due to the introduction of polarization-controlling optics into the optical path of the sensing cavity. This configuration enables two sets of “quadrature phase-shifted” interference signals to be obtained, hence eliminating the problem of directional ambiguity. The general properties of the interferometer, such as its reflectance and fringe visibility, have been characterized. More importantly, the polarization states of the injected and output lightwaves have been studied to further understand polarization-induced signal attenuation with the aim of reducing this parasitic effect. A modified zero-crossing fringe demodulation technique is described in chapter III for processing the interference signals from the dual-cavity EFFPI sensor into useful displacement information. The resolution of the demodulation scheme is determined by the number of sub-levels into which the interference fringes can be divided. In this work, a λ/64 resolution is deemed sufficient for application in periodic vibrations with relatively large amplitudes. Various signal types, such as sinusoidal, square, and triangular excitations have been applied and experimentally verified. Possible errors due to temperature variation of the laser source as well as the target orientation during displacement measurements are also investigated. In chapter IV, a phase-tracking technique is described for demodulating the interference signals into the required/desired displacement of a target subjected to non-periodic vibration. The development of a simulation and demodulation program enables the analysis of out-of-quadrature phase errors, random noise effects, quantization noise, etc. The detected phase errors can subsequently be corrected by the demodulator while the noise can be reduced via an amplitude correction method. Experimental tests under squarewave excitation carried out with a PieZo-electric Transducer (PZT) incorporating a capacitive sensor demonstrated excellent agreement (difference of only a few nanometers). The EFFPI sensor is next employed for two specific applications. In seismometry, the possibility of our sensor for detecting both vibration amplitudes and velocities is aptly demonstrated. In addition, the fiber sensor is also shown to be relatively accurate in measuring liquid level variation in an optical inclinometry set-up based on two communicating short-base vases. The final chapter concludes the work carried out in this thesis and proposes perspectives for further enhancing the performance of the developed sensor

[1]  S. E. Watkins,et al.  Smart bridges with fiber-optic sensors , 2003 .

[3]  Julian D. C. Jones,et al.  A velocimeter based on the fibre optic Sagnac interferometer , 1992 .

[4]  D. Jackson Monomode optical fibre interferometers for precision measurement , 1985 .

[5]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[6]  V P Koronkevich,et al.  Laser Doppler velocimeter as an optoelectronic data processing system. , 1975, Applied optics.

[7]  L. A. Zenteno,et al.  Fiber Sagnac interferometer temperature sensor , 1997 .

[8]  B. Culshaw,et al.  Interferometric optical fibre strain measurement , 1985 .

[9]  A. Kasukawa,et al.  Temperature Dependence of Emission Wavelength in 1.3 μm GaInAsP/InP GRIN-SCH MQW Laser Diodes Grown by MOCVD , 1990, Quantum Wells for Optics and Optoelectronics.

[10]  K. Lau,et al.  Interferometric noise reduction in fiber-optic links by superposition of high frequency modulation , 1992 .

[11]  Pramod Rastogi,et al.  Optical measurement techniques and applications , 1997 .

[12]  Frédéric Bevilacqua,et al.  Combining accelerometer and video camera: Reconstruction of bow velocity profiles , 2006, NIME.

[13]  Alan B. Tveten,et al.  Technique for elimination of polarisation fading in fibre interferometers , 1984 .

[14]  O. Frazão,et al.  Optical inclinometer based on a single long-period fiber grating combined with a fused taper. , 2006, Optics letters.

[15]  Daniel Malacara-Hernández,et al.  Direct-phase detection of modulated Ronchi rulings using a phase-locked loop , 1994 .

[16]  Hon M. Chun,et al.  Advanced fringe tracking algorithms for low-light level ground-based stellar interferometry , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[17]  Alan D. Kersey,et al.  Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling , 1990 .

[18]  D. Jackson,et al.  The effect of environmental acoustic noise on optical fibre based velocity and vibration sensor systems , 1994 .

[19]  Thierry Bosch,et al.  Modified fringe-counting technique applied to a dual-cavity fiber Fabry-Pérot vibrometer , 2007 .

[20]  Hyungsuck Cho Opto-mechatronic systems handbook techniques and applications , 2003, IEEE Aerospace and Electronic Systems Magazine.

[21]  Do-Hyun Kim,et al.  Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. , 2004, Optics express.

[22]  R L Reuben,et al.  Fiber-optic Sagnac interferometer for noncontact structural monitoring in power plant applications. , 1997, Applied optics.

[23]  Clarence W. de Silva,et al.  Vibration: Fundamentals and Practice , 1999 .

[24]  J. D. R. Valera,et al.  Combined fibre optic laser velocimeter and electronic speckle pattern interferometer with a common reference beam , 1993 .

[25]  James L. Flanagan,et al.  A Mathematical Formulation and Comparison of Zero-Crossing Analysis Techniques which have been Applied to Automatic Speech Recognition , 1975 .

[26]  Wolfgang Goetze,et al.  Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring , 1997 .

[27]  Michael Bordovsky,et al.  Novel optical vibration sensor using external cavity feedback , 1999, Photonics West.

[28]  T G Giallorenzi,et al.  Optical techniques to solve the signal fading problem in fiber interferometers. , 1982, Applied optics.

[29]  Virginio Sannibale,et al.  Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems , 2006 .

[30]  Alan D. Kersey,et al.  Input-polarisation scanning technique for overcoming polarisation-induced signal fading in interferometric fibre sensors , 1988 .

[31]  Kuang-Chao Fan,et al.  Error analysis for a diffraction grating interferometric stylus probing system , 2001 .

[32]  O. Sasaki,et al.  Laser Doppler vibration measuring system using bispectral analysis. , 1980, Applied optics.

[33]  M Servin,et al.  Phase unwrapping through demodulation by use of the regularized phase-tracking technique. , 1999, Applied optics.

[34]  A D Stokes,et al.  Vibration monitoring by using a dynamic proximity sensor with interferometric encoding. , 1997, Applied optics.

[35]  Yan Zhou,et al.  Fiber optic acoustic hydrophone with double Mach–Zehnder interferometers for optical path length compensation , 1999 .

[36]  K. Raju,et al.  Fiber Optic Gyroscope , 2004 .

[37]  B. Culshaw,et al.  Optical fiber sensor technologies: opportunities and-perhaps-pitfalls , 2004, Journal of Lightwave Technology.

[38]  D. W. Stowe,et al.  Polarization Fading in Fiber Interferometric Sensors , 1982 .

[39]  Baojin Peng,et al.  Experimental research on a novel fiber-optic cantilever-type inclinometer , 2005 .

[40]  Akio Yamamoto,et al.  A built-in displacement sensor for an electrostatic film motor , 2006 .

[41]  Fu-Kuo Chang,et al.  Structural Health Monitoring , 2016 .

[42]  D. Placko,et al.  THICKNESS TOUCHLESS MEASUREMENTS USING EDDY CURRENT SENSORS , 1989 .

[43]  B Y Kim,et al.  Fiber-optic sensor array without polarization-induced signal fading. , 1995, Optics letters.

[44]  T. Giallorenzi,et al.  Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier , 1982 .

[45]  J. Marroquín,et al.  Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. , 1997, Applied optics.

[46]  R O Claus,et al.  Optical scanning extrinsic Fabry-Perot interferometer for absolute microdisplacement measurement. , 1997, Applied optics.

[47]  Y Ichioka,et al.  Digital scanning laser microscope. , 1985, Applied optics.

[48]  T. Harimoto Phase calculation based on curve fitting with a two-wavelength interferometer. , 2003, Optics express.

[49]  R. P. Bajpai,et al.  Development and experimental studies of fibre optic extrinsic Fabry-Pérot interferometric sensor for measurement of strain in structures , 2004 .

[50]  B. Culshaw,et al.  Optical acoustic detector based on a fiber Fabry-Perot interferometer. , 2005, Applied optics.

[51]  J. S. Rao,et al.  Introductory Course on Theory and Practice of Mechanical Vibrations , 1985 .

[52]  Saibal Chatterjee,et al.  Wavelet analysis of optical signal extracted from a non-contact fibre-optic vibration sensor using an extrinsic Fabry–Perot interferometer , 2005 .

[53]  Z. Ren,et al.  Temperature dependence of bend- and twist-induced birefringence in a low-birefringence fiber. , 1988, Optics letters.

[54]  C. Henry Phase noise in semiconductor lasers , 1986 .

[55]  R. J. Goldstein,et al.  Fluid Mechanics Measurements , 1983 .

[56]  David R. Burton,et al.  Real-time hybrid fringe pattern analysis using a linear digital phase locked loop for demodulation and unwrapping , 2000 .

[57]  A. Kersey,et al.  Non-contact surface vibration analysis using a monomode fibre optic interferometer incorporating an open air path , 1985 .

[58]  D W Robinson Automatic fringe analysis with a computer image-processing system. , 1983, Applied optics.

[59]  S. Pullteap,et al.  An Extrinsic Fibre Optic Interferometer with Possible Signal Fading Compensation for Vibrometric Applications , 2005, 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings.

[60]  S. Muller,et al.  Calibration of eddy current signals for small natural surface cracks (In German: English Abstract) : Experimentalle Mechanik in Forschung und Praxis. Proceedings of the 12 Symposium 11–12 May 1989. PP157–166. VDI Verlay, 1989. ISBN 3180907312 , 1990 .

[61]  T. Giallorenzi,et al.  Optical fiber sensor technology , 1982, 1985 International Electron Devices Meeting.

[62]  G. Cancellieri Single-mode optical fiber measurement : characterization and sensing , 1993 .

[63]  Mingzheng Jiang,et al.  A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry–Perot interferometer , 2001 .

[64]  Andreas Quirrenbach,et al.  Optical Interferometry , 2001 .

[65]  A. J. Rainal Another Zero-Crossing Principle for Detecting Narrow-Band Signals , 1967 .

[66]  P L Heydemann,et al.  Determination and correction of quadrature fringe measurement errors in interferometers. , 1981, Applied optics.

[67]  J. Pate Introduction to Optics , 1937, Nature.

[68]  L. Mertz,et al.  Real-time fringe-pattern analysis. , 1983, Applied optics.

[69]  Tingyun Wang,et al.  A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer , 1998 .

[70]  H. C. Seat,et al.  An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement , 2007, 2007 International Conference on Mechatronics and Automation.

[71]  Dai Xiaoli,et al.  High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry , 1998 .

[72]  P L Ransom,et al.  Interferogram analysis by a modified sinusoid fitting technique. , 1986, Applied optics.

[73]  Yanbiao Liao,et al.  Discrimination methods and demodulation techniques for fiber Bragg grating sensors , 2004 .

[74]  D J Booth,et al.  A simple fibre optic sensor for measurement of vibrational frequencies , 1992 .

[75]  Giuseppe Molesini,et al.  Accurate polarization interferometer , 1995 .

[76]  J. Pinard,et al.  A new optical wavelength ratio measurement apparatus: the fringe counting sigmameter , 1994 .

[77]  B. Culshaw Fibre optic gyroscopes , 1982 .

[78]  Anbo Wang,et al.  Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers. , 2004, Applied optics.

[79]  D. C. Hodgson,et al.  Book Review : Fundamentals of Noise and Vibration Analysis for Engineers: M.P. Norton Cambridge University Press Cambridge, UK 1989, 619 pp, $95 (hard cover) $37.50 (paperback) , 1990 .

[80]  H R Taylor,et al.  An instrument for measuring the vibration of vehicle brake pads (squeal) , 1982 .

[81]  H. Seat A pseudo dual-cavity extrinsic fibre Fabry-Pérot interferometric vibrometer , 2004 .

[82]  T. K. Gangopadhyay,et al.  Non-contact vibration measurement based on an extrinsic Fabry–Perot interferometer implemented using arrays of single-mode fibres , 2004 .

[83]  Hans J. Tiziani,et al.  A combined distance and surface profile measurement system for industrial applications : a European project , 1994 .

[84]  Steve Rothberg,et al.  Vibration measurements using continuous scanning laser Doppler vibrometry: Theoretical velocity sensitivity analysis with applications , 2003 .

[85]  Lars Büttner,et al.  Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects , 2005 .

[86]  Brad Calder,et al.  Discovering and Exploiting Program Phases , 2003, IEEE Micro.

[87]  Kenneth T. V. Grattan,et al.  A novel adaptation of the Michelson interferometer for the measurement of vibration , 1992 .

[88]  Dacheng Li,et al.  Code counting of optical fringes: methodology and realization. , 2005, Applied optics.

[89]  J. Armstrong,et al.  Theory of Interferometric Analysis of Laser Phase Noise , 1966 .

[90]  A. Kersey,et al.  Applications of fiber-optic sensors , 1989 .

[91]  J. Chéry,et al.  A phase-tracking fiber interferometer for seismologic applications , 2008, 2008 IEEE Sensors.

[92]  Brian Culshaw,et al.  The optical fibre Sagnac interferometer: an overview of its principles and applications , 2005 .

[93]  Arnold Nicolaus,et al.  Phase-stepping interferometry: methods for reducing errors caused by camera nonlinearities. , 2002, Applied optics.

[94]  Y Ichioka,et al.  Direct phase detecting system. , 1972, Applied optics.

[95]  Lorenzo Scalise,et al.  Self-mixing laser diode velocimetry: application to vibration and velocity measurement , 2004, IEEE Transactions on Instrumentation and Measurement.

[96]  Dan Borza Mechanical vibration measurement by high-resolution time-averaged digital holography , 2005 .

[97]  D. Atchison,et al.  The eye and visual optical instruments: Frontmatter , 1997 .

[98]  Hwa-Yaw Tam,et al.  Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer , 2007 .

[100]  H. C. Seat,et al.  Dynamic displacement measurements with a dual-cavity fiber Fabry-Perot interferometer , 2008, International Workshop and Conference on Photonics and Nanotechnology.

[101]  Hua-yong Yang,et al.  Investigation of polarization-induced fading in fiber-optic interferometers with polarizer-based polarization diversity receivers. , 2006, Applied optics.

[102]  A Choudry,et al.  Digital holographic interferometry of convective heat transport. , 1981, Applied Optics.

[103]  Q Shan,et al.  New field formulas for the Fabry - Pérot interferometer and their application to ultrasound detection , 1998 .

[105]  G E Sommargren,et al.  Laser Doppler velocimeter for velocity and length measurements of moving surfaces. , 1984, Applied optics.