Unraveling the localization behavior of MWCNTs in binary polymer blends using thermodynamics and viscoelastic approaches

[1]  Ting-ting Zhang,et al.  Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity , 2017 .

[2]  S. Nobukawa,et al.  Selective localization of carbon nanotubes in PC/PET blends , 2017 .

[3]  H. Nazockdast,et al.  Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties , 2016 .

[4]  U. Sundararaj,et al.  Enhancing electrical properties of MWCNTs in immiscible blends of poly(methyl methacrylate) and styrene-acrylonitrile copolymer by selective localization , 2016 .

[5]  H. Nazockdast,et al.  Role of Multiwalled Carbon Nanotubes Localization on Morphology Development of PMMA/PS/PP Ternary Blends , 2016 .

[6]  D. Schubert,et al.  Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica , 2016 .

[7]  M. Amani,et al.  Effect of mixing conditions on the selective localization of graphite oxide and the properties of polyethylene/high-impact polystyrene/graphite oxide nanocomposite blends , 2015 .

[8]  D. Mandal,et al.  Reduction of percolation threshold of multiwall carbon nanotube (MWCNT) in polystyrene (PS)/low-density polyethylene (LDPE)/MWCNT nanocomposites: An eco-friendly approach , 2015 .

[9]  F. Yu,et al.  Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles , 2015 .

[10]  H. Nazockdast,et al.  Shear flow-induced orientation and structural recovery of multiwalled carbon nanotube in poly(ethylene oxide) matrix , 2015 .

[11]  M. Vahdati,et al.  Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend , 2015 .

[12]  M. Rong,et al.  Studies on the selective localization of multi-walled carbon nanotubes in blends of poly(vinylidene fluoride) and polycaprolactone , 2015 .

[13]  P. Cassagnau,et al.  Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends , 2014 .

[14]  Z. Dang,et al.  Effect of the selective localization of carbon nanotubes in polystyrene/poly(vinylidene fluoride) blends on their dielectric, thermal, and mechanical properties , 2014 .

[15]  H. Deng,et al.  Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: An effective method for tunable resistivity–strain sensing behavior , 2014 .

[16]  V. Altstädt,et al.  Poly(vinylidene fluoride)/polyaniline/carbon nanotubes nanocomposites: Influence of preparation method and oscillatory shear on morphology and electrical conductivity , 2013 .

[17]  A. Taghizadeh,et al.  Carbon nanotubes in blends of polycaprolactone/thermoplastic starch. , 2013, Carbohydrate polymers.

[18]  R. Foudazi,et al.  Rheology and morphology of nanosilica-containing polypropylene and polypropylene/liquid crystalline polymer blend , 2013 .

[19]  T. McNally,et al.  Localization of MWCNTs in PET/LDPE blends , 2013 .

[20]  Yadong Lv,et al.  Fractionated crystallization and morphology of PP/PS blends in the presence of silica nanoparticles with different surface chemistries , 2013, Colloid and Polymer Science.

[21]  C. Chen,et al.  A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends , 2012 .

[22]  Meysam Rahmat,et al.  Carbon nanotube–polymer interactions in nanocomposites: A review , 2011 .

[23]  B. Nysten,et al.  Influence of nanoparticle–polymer interactions on the apparent migration behaviour of carbon nanotubes in an immiscible polymer blend , 2011 .

[24]  A. Marmur,et al.  Shape-Dependent Localization of Carbon Nanotubes and Carbon Black in an Immiscible Polymer Blend during Melt Mixing , 2011 .

[25]  C. Zhang,et al.  Selective location and conductive network formation of multiwalled carbon nanotubes in polycarbonate/poly(vinylidene fluoride) blends , 2011 .

[26]  H. Nazockdast,et al.  Linear and nonlinear melt rheology and extrudate swell of acrylonitrile‐butadiene‐styrene and organoclay‐filled acrylonitrile‐butadiene‐styrene nanocomposite , 2010 .

[27]  C. Bailly,et al.  Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer , 2010 .

[28]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[29]  P. Pötschke,et al.  Selective Localization and Migration of Multiwalled Carbon Nanotubes in Blends of Polycarbonate and Poly(styrene-acrylonitrile). , 2009, Macromolecular rapid communications.

[30]  P. Cassagnau,et al.  Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends , 2009 .

[31]  Tianxi Liu,et al.  Melt rheological properties of nylon 6/multi-walled carbon nanotube composites , 2008 .

[32]  L. Robeson,et al.  Polymer nanotechnology: Nanocomposites , 2008 .

[33]  P. Cassagnau,et al.  Morphology and rheology of immiscible polymer blends filled with silica nanoparticles , 2007 .

[34]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[35]  Mehdi Hojjati,et al.  Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview , 2006 .

[36]  Souheng Wu Surface and Interfacial Tensions of Polymers, Oligomers, Plasticizers, and Organic Pigments , 2003 .

[37]  Y. Mamunya Polymer blends filled with carbon black : Structure and electrical properties , 2001 .

[38]  K. Seefeldt,et al.  Rheology of Polypropylene/Clay Hybrid Materials , 2001 .

[39]  Shigeo Asai,et al.  Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black , 1991 .

[40]  Shih,et al.  Scaling behavior of the elastic properties of colloidal gels. , 1990, Physical review. A, Atomic, molecular, and optical physics.