Double-strand RNAs targeting MaltRelish and MaltSpz reveals potential targets for pest management of Monochamus alternatus.

[1]  Sibao Wang,et al.  Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy. , 2022, Cell reports.

[2]  V. Kryukov,et al.  Physiological and Ecological Aspects of Interactions between Enthomopathogenic Fungi (Ascomycota, Hypocreales) and Insects , 2021, Entomological Review.

[3]  G. Shabbir,et al.  Effect of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, on Thrips tabaci Lindeman (Thysanoptera: Thripidae) populations in different onion cultivars , 2021 .

[4]  Zheng Wang,et al.  GNBP1 as a potential RNAi target to enhance the virulence of Beauveria bassiana for aphid control , 2021, Journal of Pest Science.

[5]  C. Morgante,et al.  Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology. , 2021, Pest management science.

[6]  S. Mandal,et al.  Relish plays a dynamic role in the niche to modulate Drosophila blood progenitor homeostasis in development and infection , 2021, bioRxiv.

[7]  X. Zhou,et al.  RNA interference‐mediated silencing of vATPase subunits A and E affect survival and development of the 28‐spotted ladybeetle, Henosepilachna vigintioctopunctata , 2021, Insect science.

[8]  Xiaoyong Liu,et al.  Peptidoglycan recognition protein-S1 acts as a receptor to activate AMP expression through the IMD pathway in the silkworm Bombyx mori. , 2020, Developmental and comparative immunology.

[9]  Andalus Ayaz,et al.  Imd pathway-specific immune assays reveal NF-κB stimulation by viral RNA PAMPs in Aedes aegypti Aag2 cells , 2020, bioRxiv.

[10]  Y. Han,et al.  An overview of insect innate immunity , 2020 .

[11]  M. Mehrabadi,et al.  The innate immune gene Relish and Caudal jointly contribute to the gut immune homeostasis by regulating antimicrobial peptides in Galleria mellonella. , 2020, Developmental and comparative immunology.

[12]  Q. Song,et al.  Bursicon homodimers induce the innate immunity via Relish in Procambarus clarkii. , 2020, Fish & shellfish immunology.

[13]  S. R. Palli,et al.  Mechanisms, Applications, and Challenges of Insect RNA Interference. , 2020, Annual review of entomology.

[14]  B. Lemaître,et al.  New insights on Drosophila antimicrobial peptide function in host defense and beyond. , 2019, Current opinion in immunology.

[15]  Xiao-qiang Yu,et al.  Ingestion of killed bacteria activates antimicrobial peptide genes in Drosophila melanogaster and protects flies from septic infection , 2019, Developmental and comparative immunology.

[16]  Mi Rong Lee,et al.  Tenebrio molitor Gram‐negative‐binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF‐007 , 2018, Insect science.

[17]  A. Urbaneja,et al.  Biological control using invertebrates and microorganisms: plenty of new opportunities , 2018, BioControl.

[18]  Z. Zou,et al.  The immune strategies of mosquito Aedes aegypti against microbial infection , 2017, Developmental and comparative immunology.

[19]  Penghua Wang,et al.  Mosquito Defense Strategies against Viral Infection. , 2016, Trends in parasitology.

[20]  T. Gabaldón,et al.  Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum , 2016, BMC Genomics.

[21]  Min Lu,et al.  A native fungal symbiont facilitates the prevalence and development of an invasive pathogen-native vector symbiosis. , 2013, Ecology.

[22]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[23]  Xiao-Fan Zhao,et al.  Identification and molecular characterization of a Spätzle-like protein from Chinese shrimp (Fenneropenaeus chinensis). , 2009, Fish & shellfish immunology.

[24]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[25]  H. Mori,et al.  Identification and functional analysis of Relish homologs in the silkworm, Bombyx mori. , 2007, Biochimica et biophysica acta.

[26]  Dominique Ferrandon,et al.  Dual Detection of Fungal Infections in Drosophila via Recognition of Glucans and Sensing of Virulence Factors , 2006, Cell.

[27]  T. Michel,et al.  Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria , 2004, Nature Immunology.

[28]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[29]  R. Delotto,et al.  Proteolytic processing of the Drosophila Spätzle protein by Easter generates a dimeric NGF-like molecule with ventralising activity , 1998, Mechanisms of Development.

[30]  K. Anderson,et al.  The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo , 1994, Cell.

[31]  M. Linit Nemtaode-vector relationships in the pine wilt disease system. , 1988, Journal of nematology.

[32]  Q. Ren,et al.  Bursicon homodimers regulate the expression of anti-microbial peptide genes via relish in Macrobrachium nipponense , 2022 .

[33]  Yuzhen Lu,et al.  Pattern recognition receptors in Drosophila immune responses. , 2019, Developmental and comparative immunology.

[34]  O. Christiaens,et al.  Rethink RNAi in Insect Pest Control: Challenges and Perspectives , 2018 .

[35]  X. Xia,et al.  The role of natural antimicrobial peptides during infection and chronic inflammation , 2017, Antonie van Leeuwenhoek.

[36]  Toshiya Ikeda,et al.  The Japanese Pine Sawyer Beetle as the Vector of Pine Wilt Disease , 1984 .