Subsurface methane formation in graphite due to exposure to H+ and D+

[1]  A. A. Haasz,et al.  Synergistic chemical erosion of graphite due to simultaneous bombardment by H+ and other low-Z ions using a dual-beam accelerator , 1993 .

[2]  A. A. Haasz,et al.  Molecule formation due to sequential and simultaneous exposure of graphite to H+ and D+ , 1992 .

[3]  A. A. Haasz,et al.  Flux and fluence dependence of H+ trapping in graphite , 1990 .

[4]  Y. Gotoh,et al.  High resolution electron microscopy of graphite defect structures after KeV hydrogen ion bombardment , 1989 .

[5]  W. Möller,et al.  Temperature dependence of ion-induced detrapping of deuterium in graphite , 1989 .

[6]  A. A. Haasz,et al.  Hydrocarbon formation due to combined H + ion and H0 atom impact on pyrolytic graphite , 1988 .

[7]  J. Roth,et al.  Hydrogen-ion-induced detrapping of implanted deuterium in graphite , 1988 .

[8]  J. Roth,et al.  Mechanism of hydrocarbon formation upon interaction of energetic hydrogen ions with graphite , 1987 .

[9]  W. Möller,et al.  Subsurface molecule formation in hydrogen‐implanted graphite , 1987 .

[10]  V. Philipps,et al.  Surface modification due to hydrogen-graphite interaction , 1987 .

[11]  A. A. Haasz,et al.  Flux and energy dependence of methane production from graphite due to H+ impact , 1987 .

[12]  V. Philipps,et al.  Chemical erosion of amorphous hydrogenated carbon films by atomic and energetic hydrogen , 1987 .

[13]  V. Philipps,et al.  Differences in the CH3 and CH4 formation from graphite under bombardment with hydrogen ions and hydrogen atoms/argon ions , 1984 .

[14]  W. Möller,et al.  Thermal and ion-induced release of hydrogen atoms implanted into graphite , 1987 .